Stellingen, lemma’s en definities dictaat
Hoofdstuk 1, Limieten en continuı̈teit
1.1 De afstand in Rn
Lemma 1.2 (Ongelijkheid van Cauchy-Schwarz)
Voor ieder tweetal x, y ∈ Rn geldt:
| < x, y > | ≤ ||x||||y||
(Deze ongelijkheid is een gelijkheid dan en slechts dan als x en y lineair onafhankelijk zijn).
Lemma 1.3
Voor alle x, y ∈ Rn en λ ∈ R geldt:
(a) ||x|| ≥ 0 en ||x|| = 0 ⇐⇒ x = 0
(b) ||λx|| = |λ|||x||
(c) ||x + y|| ≤ ||x|| + ||y|| (driehoeksongelijkheid)
Gevolg 1.5
(a) (’Herhaalde driehoeksongelijkheid’) Voor alle m ≥ 2, x1 , ..., xm ∈ Rn geldt:
||x1 + ... + xm || ≤ ||x1 || + ... + ||xm ||
(b) (’Omgekeerde driehoeksongelijkheid’) Voor alle x, y ∈ Rn geldt:
||x − y|| ≥ |||x|| − ||y|||
Lemma 1.7 Voor elke x ∈ Rn geldt: Pn
(a) |xi | ≤ ||x|| voor alle 1 ≤ i ≤ n. (b) ||x||leq i=1 |xi |. Opmerking: hiervoor zijn alleen algemene eigen-
schappen van de norm (1.3) gebruikt, dit geldt derhalve voor elke norm.
1.2 Limieten van functies
Definitie 1.12
Laat f : Rn → Rm een functie zijn, en a ∈ Rn en b ∈ Rm punten. Men zegt dat f in a de limiet b (notatie:
limx→a f (x) = b) als voor iedere > 0 een δ > 0 bestaat met de volgende eigenschap: Als x ∈ Dom(f ) en
d(x, a) < δ, dan d(f (x), b) <
Lemma 1.16
Zij f : Rn → Rm , a ∈ Rn en b ∈ Rm . Dan zijn de volgende beweringen equivalent:
(a) limx→a f (x) = b;
(b) limx→a d(f (x), b) = 0
Definitie 1.17
Is a ∈ Rn en r > 0, dan definieren we de (open) bol met middelpunt a en straal r door:
B(a; r) = {x ∈ Rn | d(x, a) < r}
Definitie 1.12’
Met de definitie van bollen kunnen we de limiet-definitie als volgt herschrijven:
Voor elke > 0, bestaat er een δ > 0, zodat f (Dom(f ) ∩ B(a; δ)) ⊂ B(b; ).
Opmerking 1.19
Er kan zich de merkwaardige situatie voordoen dat een functie f : Rn → Rm meer dan één limiet heeft voor
x → a, Dit gebeurt as er een δ > 0 bestaat zodat B(a; delta) ∩ Dom(f ) = ∅.
Bewering: Veronderstel dat er een δ > 0 bestaat zo dat B(a; δ) ∩ Dom(f ) = ∅. Dan geldt dat voor elke
b ∈ Rm dat limx→a f (x) = b.
1
,Definitie 1.20
Zij A ⊂ Rn . Onder een limietpunt van A verstaan we een punt a ∈ Rn met de volgende eigenschap:
voor alle δ > 0 geldt: B(a; δ) ∩ A 6= ∅
Lemma 1.22 (eenduidigheid van limiet)
Zij f : Rn → Rm een functie en a een limietpunt van Dom(f ). Veronderstel dat b, c ∈ Rm en dat
limx→a f (x) = b en limx→a f (x) = c. Dan geldt b = c.
1.3 Rekenregels voor limieten
Lemma 1.25 (Somregel)
Laat f : Rn → Rm en g : Rn → Rm functies zijn, en a ∈ Rn en b, c ∈ Rm punten.
Als limx→a f (x) = b en limx→a g(x) = c, dan limx→a (f (x) + g(x)) = b + c.
Lemma 1.26 (Productregel)
Laat f : Rn → R en g : Rn → Rm functies zijn, en a ∈ Rn , λ ∈ R, b ∈ Rm .
Als limx→a f (x) = λ en limx→a g(x) = b, dan limx→a f (x)g(x) = λb.
Lemma 1.28 (Quotientregel)
Laat f : Rn → R een functie, a ∈ Rn en λ ∈ R, λ 6= 0.
1
Als limx→a f (x) = λ, dan limx→a f (x) = λ1
Lemma 1.30
Laat f : Rn → Rm een functie zijn en a ∈ Rn en b ∈ Rm punten. Dan zijn de volgende beweringen equiva-
lent:
(a) limx→a f (x) = b;
(b) limx→a fi (x) = bi voor alle 1 ≤ i ≤ m
Lemma 1.32
Laat f : Rn → Rm en g : Rm → Rp functies zijn, en a ∈ Rn , b ∈ Rm en c ∈ Rp punten.
Als limx→a f (x) = b en limy→b g(y) = c dan limx→a g(f (x)) = c.
1.4 Limieten en ongelijkheden
Lemma 1.33
Laat D ⊂ Rn zijn en a een limietpunt van D. Laat f, g : D → R functies zijn en veronderstel dat
limx→a f (x) = b en limx→a g(x) = c met b, c ∈ R.
Als f (x) ≤ g(x) voor alle x ∈ D dan geldt ook: b ≤ c.
Opmerking: strikte ongelijkheden blijven niet altijd behouden. Neem als voorbeeld D =]0, ∞] en f (x) = 0,
g(x) = x.
Lemma 1.35 (Insluitstelling)
Laat D ⊂ Rn en f, g, h : D → R een drietal functies met f (x) ≤ g(x) ≤ h(x) voor alle x ∈ D. Veronderstel
dat a ∈ Rn en dat er een λ ∈ R bestaat met limx→a f (x) = λ en limx→a h(x) = λ.
Dan geldt ook limx→a g(x) = λ.
1.5 Continuiteit
Definitie 1.38
Een functie f : Rn → Rm heeft continu in een punt a ∈ Rn als a ∈ Dom(f ) en bovendien: limx→a f (x) =
f (a).
De functie f heet continu op een verzameling A ∈ Rn als f continu is in elk punt a ∈ A. De functie f heeft
continu als hij continu is op Dom(f ).
2
, Lemma 1.41
Zij f = (f1 , ..., fm ) : Rn → Rm een functie en a ∈ Rn een punt. Dan zijn de volgende uitspraken gelijk-
waardig:
(a) De functie f is continu in a;
(b) Voor iedere 1 ≤ i ≤ m is de funcite fi continu in a.
Lemma 1.43
Laat f, g : Rn → Rm functies zijn en a ∈ Rn een punt. Als f en g continu zijn in a, dan is de somfunctie
f + g dat ook.
Lemma 1.44
Laat f : Rn → R en g : Rn → Rm functies zijn en a ∈ Rn een punt.
(a) Als f en g continu in a dan is f g dat ook.
(b) Als f continu is in a en bovendien geldt dat f (a) 6= 0, dan is ook de functie 1/f : x → 1/f (x) continu in a.
Lemma 1.45
Iedere rationele functie op Rn is continu op zijn domein.
Lemma 1.47
Laat f : Rn → Rm en g : Rm → Rp functies zijn.
(a) Is f continu in a en g continu in f (a), dan is de samenstelling g ◦ f continu in a.
(b) Zijn f en g continu op hun domein, dan is ook g ◦ f continu op zijn domein.
1.6 Toepassing: rekenregels voor differentieren
Veronderstel dat I ⊂ R een interval met meer dan één punt.
Definitie 1.49
Zij f : I → Rn en a ∈ I. De functie f heeft differentieerbaar in a als er een vector v ∈ Rn bestaat met:
f (x) − f (a)
limx→a =v
x−a
Lemma 1.53
Laat f : I → Rn differentieerbaar zijn in a. Dan is f continu in a.
Lemma 1.54
Zij f = (f1 , ..., fn ) : I → Rn een functie en a ∈ I. De functie f is differentieerbaar in a dan en slecht dan
als elke van de functies fi (1 ≤ i ≤ n) differentieerbaar is in a. Is f differentieerbaar in a dan geldt:
f 0 (a) = (f10 (a), ..., fn0 (a))
Lemma 1.55
Laat f, g : I → R differentieerbaar zijn in a ∈ I, zij λ ∈ R. Dan zijn ook de functies f + g, f g en λf
differentieerbaar in a. Voorts geldt:
(a) (f + g)0 (a) = f 0 (a) + g 0 (a)
(b) (f g)0 (a) = f 0 (a)g(a) + f (a)g 0 (a)
(c) (λf )0 (a) = λf 0 (a)
Is bovendien g(a) 6= 0 dan is ook de functie f /g differentieerbaar in a, en er geldt:
0 0
(a)g 0 (a)
(d) fg (a) = f (a)g(a)−f g(a)2
Stelling 1.56 (De kettingregel)
Zij f : I → R, a ∈ R, J ⊂ R een interval dat f (I) bevat en g : J → R. Als f en g differentieerbaar zijn in
a, resp. f (a), dan is g ◦ f differentieerbaar in a, met afgeleide:
(g ◦ f )0 (a) = g 0 (f (a))f 0 (a)
3