100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
1BM120 - Computational Intelligence €4,99
In winkelwagen

College aantekeningen

1BM120 - Computational Intelligence

 61 keer bekeken  0 keer verkocht

A summary of the lectures of Computational Intelligence and strong and weak points of the algorithms discussed in the course 1BM120.

Voorbeeld 2 van de 14  pagina's

  • 12 september 2021
  • 14
  • 2020/2021
  • College aantekeningen
  • Onbekend
  • Alle colleges
Alle documenten voor dit vak (2)
avatar-seller
AnneBannink
Lecture summary 1BM120
Lecture 1: evolutionary computation
Computational intelligence is the theory, design, application and development of biologically and
linguistically motivated computational paradigms. CI consists of three pillars:

1. Evolutionary computation (and swarm intelligence)
2. Fuzzy systems
3. Neural networks

CI tends to focus on bio-inspired algorithms (genetic programming, artificial immune systems). AI is
about deductive and symbolic reasoning aiming at replicating animal (human) behavior (logic
programming, Hodgkin-Huxley neuronal models). The main overlap between CI and AI are machine
learning and neural networks.

Bio-inspired meta-heuristic are population-based iterative stochastic algorithms for global
optimization.

Any objective function can be re-stated as an optimization problem. Real-world problems are often
non-convex, non-linear, multi-model etc. Computational intelligence optimization meta-heuristics
can be employed.

- Create a random set of candidate solutions to a given optimization problem and simulate
Darwinian processes to evolve the population towards optimal solutions.
- A candidate solution is encoded as a fixed-length vector which is a feasible solution and its
quality can be evaluated by means of an objective function f (fitness function).

Genetic algorithms:

A set of randomly generated candidate solutions evolves iteratively and converges to the optimal
solution of a given problem.

1. A population of random N individuals is created
2. The fitness value of all N individuals is calculated
3. Survival of the fittest: a selection mechanism is used to choose pairs of individuals with a
probability proportional to their fitness values
4. Each pair of selected individuals (the parents) undergoes a genetic crossover: their
chromosomes are randomly exchanged to produce new individuals (the offspring)
5. The offspring undergo genetic mutation: some symbols of the individuals are randomly
changed
6. When N offsprings are created, they replace the previous population
7. If the termination criterion is met, the algorithm returns the best fitting individuals as
solution; else, perform a new generation by iterating the process from step 2.

Termination criterion:

1. Fitness value threshold
2. Fixed amount of generations
3. Loss of diversity in the population

Selection methods:

, - Roulette wheel: the probability of selecting an individual is proportional to its fitness value:
f ( xi )
Psel ( x i )= N

∑ ❑ f ( xn)
n=1
- Ranking: rank solutions according to their fitness value, the probability of selecting an
1
individual is proportional to its ranking: Psel ( x i )=
r i +1
- Tournament: a selection of individuals are chosen from the population to compete in a
tournament. The best individual wins the tournament and is selected.

Crossover:

Each of the parents, extract a random number. If this number is smaller than the crossover
probability, the parents undergo crossover.

- Single point crossover: select a random crossover point and exchange the parts from this
line.
- Uniform crossover: randomly generate a bit-mask. The mask denotes which bit is kept on
from parents 1 to offspring 1 and which are swapped form parent 1 to offspring 2.
- Partially matched crossover: special type of crossover preserving
relative order:



Mutation:

Mutation introduces new genetic material into the population.

- Uniform mutation: bit flip (1 becomes 0 and the other way
around). A high mutation probability corresponds to a random
search

Elitism: during the evolution, one excellent individual might be “destroyed” by the genetic operators.
Elitism preserves such individual, by copying the best individual to the next generation.

Premature convergence: when a GA converges too fast to a suboptimal population.

Loss of diversity: when the individuals of a GA population are too similar, so that the crossover is no
longer effective.



Handling constraints:

- Set the fitness of unfeasible solutions to extreme values,
- Penalize the fitness function,
- Fix wrong solutions,
- Use special encodings,
- Manipulate the search space.

Lecture 2: evolutionary and swarm computation
Differential evolution is a parallel direct search method based on parameters vectors for real-valued
global optimization. Evolutionary computation approach: a population of solutions evolves

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper AnneBannink. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 50843 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,99
  • (0)
In winkelwagen
Toegevoegd