Macroeconomics Summary
B.J.H. De Jong
September 23, 2021
Week 1
Lecture 1: The Likelihood Principle
A sample space is the set of all samples you could draw. Denoted by; Y. The parametric statistical
model (or parametric class) F is a set of pdf’s with the same given functional form, of which the elements
differ only by having different values of some finite-dimensional parameter θ.
F := {f (·; θ) | θ ∈ Θ ⊆ Rk } k<∞
The likelihood function for the parametric statistical model F is a function L : Θ → R+ , defined as the
following shows and it gives the density value of the data as a function of the parameter.
n
Y
L(θ; y) := c(y)f (y; θ) = c f (yi ; θ) (1)
i=1
Likelihoods for different samples are said to be equivalent if their ratio does not depend on θ. The notation
is L(θ; y) ∝ L(θ; z). I.e. if we can write: L(θ; y) = c(y, z)L(θ; z); where the function c does not depend on
the parameter.
Lecture 2: Sufficiency (35)
A statistic is a function T : Y → Rr , r ∈ N+ , such that T(y) does not depend on θ, with t = T(y) its
realization, or sample value. Some remarks about statistics: 1) A statistic can be multi-dimensional. 2) The
collection of order statistics is a statistic. 3) The likelihood function is ”not” a statistic, as it depends on the
parameter theta. 4) The maximum of the likelihood function can be a statistic. We do not want unnecessary
large statistic thus: For some F, a statistic T(y) is sufficient for θ if it takes the same value at two points
y, z ∈ Y only if y and z have equivalent likelihoods:
T (y) = T (z) =⇒ L(θ; y) ∝ L(θ; z) ∀θ ∈ Θ
We can also say: If T(y) is sufficient for θ, then it contains all the information necessary to compute the
likelihood. Notice that the ‘trivial’ statistic T(y) = y is always sufficient. Neyman’s factorization’s
Theorem: For some F, T (·) is sufficient for θ iff we can factorize:
f (y; θ) = h(y)g(T (y); θ). (2)
This also implies that a one-to-one function of a sufficient statistic is also a sufficient statistic. We could
also check sufficiency by showing that the conditional distribution f (y|T (y) = t)does not depend on θ. This
is not very much discussed.
For some F, a sufficient statistic T(y) is minimal sufficient for θ if it takes distinct values only at points
in Y with non-equivalent likelihoods:
T (y) = T (z) ⇐⇒ L(θ; y) ∝ L(θ; z) ∀θ ∈ Θ
1
, We can also say: the minimum amount of information we need to characterize the likelihood. This is
equivalent to the condition:
L(θ; y)
(3)
L(θ; z)
is free of θ iff T(y) = T(z).
For a statistic T(y) we can partition Y into subsets Yt , on which T(y) = t, where t is in the range of T(·).
We can also make a partitioning of Y using the notion of equivalent likelihood.
Week 2
Lecture 3: Exponential families (66)
A parametric family is said to be exponential of order r if its densities of an observation yj can be written as
r
!
X
f (yj ; θ) = q(yj )exp ψi (θ)ti (yj ) − τ (θ) (1)
i=1
where the ti (yj ) do not depend on θ and the ψi (θ) and τ (θ) do not depend on yj . If the exponential family
(1) is in reduced form, then T = (t1 (y), ..., tr (y)) is minimal sufficient for θ.
An exponential family is regular if:
1. The parameter space Θ is natural, i.e.
(Z r
! )
X
Θ= q(y)exp ψi (θ)ti (y) dν(y) < ∞
Y i=1
2. dimΘ = k = r, the dimension of the minimal sufficient statistic.
3. The function θ 7→ ψ(θ) = (ψ1 (θ), ..., ψr (θ)) is invertible
4. The functions ψ1 (θ), ..., ψr (θ) are infinitely often differentiable in θ.
If we know a function belongs to the exponential family we can do this:
τ 0 (θ)
E[t(Yj )] = (2)
ψ 0 (θ)
The equation (2) simplifies if ψ(θ) = θ. Such a parametrization is called canonical, with ψ the canonical
parameter.
Lecture 4: Maximum Likelihood (83)
Estimation is finding an estimator θ̂ for the true parameter that generated our data, say θ0 . Definition: An
estimator is a function θ̂ : Y → Θ. The maximum likelihood estimator (MLE) of θ is an element θ̂ ∈ Θ
which attains the maximum value of the likelihood L(θ) in Θ, i.e.
L(θ̂) = max L(θ) (3)
θ∈Θ
the basic idea of maximum likelihood estimation is to find the parameter that maximizes the chance of seeing
the sample we have. We have that the likelihood and the log-likelihood give the same maximum.
If L(θ) is differentiable and Θ is an open subset of Rk , then the MLE must satisfy:
∂
`(θ)|θ=θ̂ = 0 (4)
∂θ
2
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Bramdejong01. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.