Concepts and Operations in n-dimensional Euclidean Space
9 keer bekeken 0 keer verkocht
Vak
Mathematics
Instelling
University Of Cape Town (UCT)
For every natural number n we define n-dimensional space as the set Rn of all ordered n-tuples
x1 x2 xn where xi R for i 1 2 n.
One-dimensional space R1 corresponds with the set of real numbers R. For n 2 we usually
denote the ordered n-...
relation Definition 1.3.1 Given sets A and B, a relation R between A and B is a subset of A B. If
.a; b/ 2 R; we write a Rb and we say a is related to b.
Example 1.3.2
Consider those points .x; y/ in the plane R2 which are related by the condition that
x 2 C y 2 D 4:
p
We note that some values of x are related to more than one value of y; e.g. 1 is related to 3
p p 2 p 2
as well as to 3; since .1/2 C 3 D 4 and .1/2 C 3 D 4. A relation where such a
situation does not occur, is called a function.
function
Definition 1.3.3 A function f : A ! B is a relation between two sets A and B with the property
that, for every a 2 A there exists one and only one element b 2 B such that .a; b/ 2 f:
If .a; b/ 2 f we write f .a/ D b and we say b is the image of a under f , or f maps a to b:
Examples 1.3.4
1. The relation R D .x; y/j x 2 C y 2 D 4; x 2 [ 2; 2]; y 2 [ 2; 2] is not a function since,
p p
as we have seen in Example 1.3.2, 1; 3 2 R and .1; 3/ 2 R:
2. The relation .x; y/j x 2 R; y 2 R; y D x 2 is a function, which we can write as
f : R ! R; f .x/ D x 2 :
domain Given a function f : A ! B, the set A is called the domain of f: The set of all b 2 B for which
there exists an a 2 A such that f .a/ D b is called the image (or the range) of f and is denoted
image by f .A/ : Thus
f .A/ D fb 2 B j f .a/ D b for some a 2 Ag :
We shall often define a function by means of a formula only (without specifying the domain). The
domain of the function is then assumed to consist of all elements for which the formula makes
sense. We denote the domain of f by D f .
, 5 MAT2615/1
Example 1.3.5
Let f be the function defined by
1
f .x/ D :
x
1
Since x
exists for every real number x except for x D 0, the domain of f is the set
Df D R f0g:
Two functions f and g are said to be equal if D f D Dg and f .x/ D g .x/ for every x 2 D f :
Suppose f and g are functions such that Dg D f and g .x/ D f .x/ for every x 2 Dg : Then we restriction
say g is a restriction of f and f is an extension of g: extension
If g is a restriction of f and Dg D A, we say g is f restricted to A and we write
g D f jA:
Consider a function f : A ! B: If the image of A under f is B, then we say that f maps A onto
B. Let us define this concept precisely.
Definition 1.3.6 A function f : A ! B is said to map A onto B if for each b 2 B there is at least onto
one a 2 A such that f .a/ D b; in other words, the equation f .x/ D b has at least one solution.
Remark 1.3.7
A function always maps its domain onto its image.
Given a function f : A ! B, it is often important to be able to determine an a such that f .a/ D b,
for a prescribed b, and to ascertain whether there is only one such value of a. If f maps A onto
B, we know there is at least one such a in A. If there is at most one such a, we say that f is
one-to-one.
Definition 1.3.8 A function f : A ! B is called one-to-one if f .x/ D f .y/ implies that x D y. one-to-one
, 6
Examples 1.3.9
1. Consider the function
f : R ! R; f .x/ D sin x:
The function f maps R into R, but it does not map R onto R since there is, for example ,
no real number x such that sin x D 2:
The image of f is the interval [ 1; 1]. Thus f maps R onto [ 1; 1].
Furthermore, f is not one-to-one, because for each b 2 [ 1; 1] the equation sin x D b has
infinitely many solutions in R:
2. Consider the function
g:[ ; ] ! [ 1; 1]; g .x/ D sin x:
2 2
The function g is a restriction of the function f given in the previous example. It maps the
interval [ 2 ; 2 ] onto the interval [ 1; 1]: Moreover, g is one-to-one, because if
b 2 [1; 1]; the equation sin x D b has one and only one solution in the interval [ 2 ; 2 ];
(namely x D sin 1 b).
It is often useful to compose two functions f and g by first applying g and then applying f to the
output of g.
f g Definition 1.3.10 The composition of two functions f and g (in that order) is the function f g
defined by
. f g/ .x/ D f .g.x//:
The domain of f g consists of all x in the domain of g for which . f g/ .x/ is meaningful.
Remarks 1.3.11
1. If g maps the set A onto the set B and f maps B onto the set C, then f g maps A onto C.
The diagram below illustrates this situation.
g f
A B C
f g
2. For f .g.x// to be defined, g.x/ has to be defined, so x has to be in the domain of g:
Furthermore, f .g.x// has to be defined, so g.x/ has to be in the domain of f:
, 7 MAT2615/1
3. The function g f is usually not the same as the function f g:
Example 1.3.12
Consider the functions f and g given by
p
f .x/ D x and g.x/ D x 2 :
Now
p
.f g/ .x/ D f .g.x// D f x 2 D x 2 D jxj
and
p p 2
.g f / .x/ D g. f .x// D g x D x D x:
Since g.x/ is defined for all x 2 R and f .x 2 / is defined for all x 2 R; the domain of f g is R:
Since f .x/ is defined only for x 0 and g. f .x// is defined for every real number x 0, the
domain of g f is fx 2 R j x 0g :
With each set A we associate a special function, called the identity map on A. This is the function
that maps every element of A to itself.
Definition 1.3.13 The identity map on a set A is the function I A : A ! A defined by identity map
I A .a/ D a for every a 2 A:
The notion of an identity map now allows us to define inverses of certain functions.
Definition 1.3.14 A function f : A ! B has an inverse g : B ! A if
inverse func-
g f D I A and f g D IB : tion
Thus the functions f : A ! B and g : B ! A are inverses of one another if
.g f / .a/ D a for all a 2 A and . f g/ .b/ D b for all b 2 B:
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper AXIOMATIK. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €2,70. Je zit daarna nergens aan vast.