100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Colleges Applied Data Analysis €3,11
In winkelwagen

College aantekeningen

Samenvatting Colleges Applied Data Analysis

 148 keer bekeken  2 keer verkocht

Samenvatting colleges Applied Data Analysis

Voorbeeld 3 van de 17  pagina's

  • 29 januari 2015
  • 17
  • 2012/2013
  • College aantekeningen
  • Onbekend
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
Veertje93
Applied Data Analysis
Samenvatting
Intro lecture
After succesful completion of this course, you are expected to be able to:
- Recognize the main types of experimental and observational study design
- Choose the appropriate method of data analysis given the study design and type of
variables
- Prepare a protocol for data analysis
- Perform basic data analysis and interpret the results in a context of human intervention
trials and observational studies
- Quickly learn new data-analysis skills, which can be applied during thesis and research
- Understand the principles of calculation of sample size and study power and are able to
conduct these calculations for basic study designs
- Understand how stratification and regression analysis can be used to adjust for
confounding
- Understand the principles and procedures of energy-adjustment and is able to adjust
for energy using different methods.

Course is divided in ten topics:
1. SPSS
2. Practical modules
3. ANOVA
4. Analysis plan
5. Log-transformation and non-parametric tests
6. Logistic regression
7. Literature discussion
8. Sample size
9. Confounding
10.Energy adjustment

Lecture ANOVA
Intervention study designs:
- Parallel intervention study with more than two treatment arms
- Intervention study including baseline measurements
- 2x2 factorial design
- Repeated measures design

Parallel intervention study with more than two treatment arms
- One unexposed group, two exposed groups
Use:
- When you are interested in two different treatments for the same endpoint compared to
a placebo
Analyse:
- One-way ANOVA
o One continuous outcome (= dependent variable)
o One discrete exposure variable (= independent variable)
- H0 : μ1 = μ2 = μ3 (population means are equal)
Ha : at least one of the population means differs from the rest
One-way ANOVA: Compares variances in your data

, - Total variance: Sum of squares of the
total
- Variance explained by treatment:
model Sum of squares (between
groups)
- Unexplained variance: Residual sum
of squares (within groups)
 You want: big SSm and low SSr
F-ratio: MSm/MSr
MS = SS/df

Df: between groups: Ngroup-1
Within group: Npeople-Ngroup
Total df: between df+ within group df
Assumptions of ANOVA:
- Groups are more or less equal in size and have similar variances (homogeneity of
variance)
- Parametric test, dependent has normal distribution (also within groups!)
 What if assumptions are not met:
o Log-transformation
o Non-parametric test: Kruskal Wallis
Contrast and Post-Hoc tests
Contrast: when you have a specific hypothesis (each contrast compares two chunks of
variances)
compare one exposure group with the other, having the placebo group as a reference group
- Simple (first): each category is compared to the first category
- Simpe (last): each category is compared to the last category
- Repeated: each category (except the first) is compared to the previous category
Post-Hoc: when you have no specific hypothesis (LSD, Tukey, Bonferroni and dunnet)
- Pairwise comparisons that are designed to compare all different combinations of the
treatment groups
- Adjust for multiple comparisons
o LSD: ~similar to t-test for comparing each pair of treatments (multiple t-tests at
the same time)
o Tukey: p-value=0.05 holds for every pair of differences
o Bonferroni: p-value is multiplied by the number of comparisons
o Dunnett: to be used when comparing simultaneously a number of treatments
with a control
 Dunnett is only usable for comparing treatments with only 1 placebo group (which is
this case)

Intervention study including baseline measurements
Only two groups: unexposed and exposed
Two measurements: at the beginning and at the end
Analysis: ANCOVA
- One continuous outcome (=dependent variable)
- One discrete exposure variable (= independent variable)
- A covariate (continuous, independent variable)
- Hypothesis:
o H0 : μ1 = μ2 = μ3 (population means are equal while controlling for the effect of
one (or more) other variables)
o Ha : at least one of the population means differs from the rest
- Total variance: SSt

, - Variance explained by the
treatment: SSm (between groups)
- Unexplained variance:
o SSr (within groups)
o Explained by the covariate
 You want the variance by the
covariate out of the unexplained
variance to recalculate the F-
ratio to do the ANCOVA
 Therefor the unexplained
variance becomes smaller : test
= more powerful

2x2 factorial design
4 groups, with 2 exposures (group1: exposure 1, group 2: exposure 2, group 3: both
exposures, group 4: unexposed)
Compare two exposures at the same time with a placebo group
Why do you use it:
- Study interaction
o In epidemiology : Effect modification
o They show how the effect of one independent variable (exposure) might depend
on the effect of another
- Efficiency (especially when there is no interaction between the two different exposures)

Analysis:
Two-way ANOVA
- One continuous outcome (=dependent variable)
- Two discrete exposure variables (=independent variables)
 It is necessary that you have different participants in all the four groups
- Total variance (SSt)
- Unexplained variance (SSr, within groups)
- Explained by treatment variance (SSm,
between groups)
o Variance explained by Treatment A
(SSa)
o Variance explained by treatment B
(SSb)
o Variance explained by the interaction
of A and B (SSa*b)
- When there is no interaction, you can add up
the groups

Repeated measures design
Why do we use it?
- Interested in the change over time compared between treatment groups
Analysis:
Repeated measures ANOVA
- Continuous outcome measured more than once over time on the same subject
- One discrete exposure variable
- Two types of variation:
o Between-subject variation: treatment (exposure)
o Within-subject variation: more measurements on same subject in time (take
correlation into account)
- Equal variance assumption: in this test -> sphericity assumption (mauchly’s test of
sphericity P<0.05 -> variances are equal, more or less, when not adjust results: take
greenhouse-geisser adjustment)

Summerize:
ANOVA can be used for:

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Veertje93. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,11. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53068 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,11  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd