100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Kansrekening en statistiek Antwoorden €5,48   In winkelwagen

College aantekeningen

Kansrekening en statistiek Antwoorden

 234 keer bekeken  0 keer verkocht

Lecture notes of 100 pages for the course Kansrekening en Statistiek at TU Delft

Voorbeeld 3 van de 100  pagina's

  • 8 februari 2015
  • 100
  • 2004/2005
  • College aantekeningen
  • Onbekend
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
89
29

A Modern Introduction to Probability and
Statistics




Full Solutions
February 24, 2006




©F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester

,458 Full solutions from MIPS: DO NOT DISTRIBUTE

29.1 Full solutions
2.1 Using the relation P(A ∪ B) = P(A)+P(B)−P(A ∩ B), we obtain P(A ∪ B) =
2/3 + 1/6 − 1/9 = 13/18.
2.2 The event “at least one of E and F occurs” is the event E ∪ F . Using the
second DeMorgan’s law we obtain: P(E c ∩ F c ) = P((E ∪ F )c ) = 1 − P(E ∪ F ) =
1 − 3/4 = 1/4.
2.3 By additivity we have P(D) = P(C c ∩ D)+P(C ∩ D). Hence 0.4 = P(C c ∩ D)+
0.2. We see that P(C c ∩ D) = 0.2. (We did not need the knowledge P(C) = 0.3!)
2.4 The event “only A occurs and not B or C” is the event {A ∩ B c ∩ C c }. We
then have using DeMorgan’s law and additivity

P(A ∩ B c ∩ C c ) = P(A ∩ (B ∪ C)c ) = P(A ∪ B ∪ C) − P(B ∪ C) .

The answer is yes , because of P(B ∪ C) = P(B) + P(C) − P(B ∩ C)
2.5 The crux is that B ⊂ A implies P(A ∩ B) = P(B). Using additivity we obtain
P(A) = P(A ∩ B) + P(A ∩ B c ) = P(B) + P(A \ B). Hence P(A \ B) = P(A) − P(B).
2.6 a Using the relation P(A ∪ B) = P(A) + P(B) − P(A ∩ B), we obtain 3/4 =
1/3 + 1/2 − P(A ∩ B), yielding P(A ∩ B) = 4/12 + 6/12 − 9/12 = 1/12.
2.6 b Using DeMorgan’s laws we get P(Ac ∪ B c ) = P((A ∩ B)c ) = 1 − P(A ∩ B) =
11/12.
2.7 P((A ∪ B) ∩ (A ∩ B)c ) = 0.7.
2.8 From the rule for the probability of a union we obtain P(D1 ∪ D2 ) ≤ P(D1 ) +
P(D2 ) = 2 · 10−6 . Since D1 ∩ D2 is contained in both D1 and D2 , we obtain
P(D1 ∩ D2 ) ≤ min{P(D1 ) , P(D2 )} = 10−6 . Equality may hold in both cases: for
the union, take D1 and D2 disjoint, for the intersection, take D1 and D2 equal to
each other.
2.9 a Simply by inspection we find that
A = {T T H, T HT, HT T }, B = {T T H, T HT, HT T, T T T },
C = {HHH, HHT, HT H, HT T }, D = {T T T, T T H, T HT, T HH}.
2.9 b Here we find that Ac = {T T T, T HH, HT H, HHT, HHH},
A ∪ (C ∩ D) = A ∪ ∅ = A, A ∩ Dc = {HT T }.
2.10 Cf. Exercise 2.7: the event “A or B occurs, but not both” equals C = (A∪B)∩
(A ∩ B)c Rewriting this using DeMorgan’s laws (or paraphrasing “A or B occurs,
but not both” as “A occurs but not B or B occurs but not A”), we can also write
C = (A ∩ B c ) ∪ (B ∩ Ac ).
2.11 Let the two outcomes be called 1 and 2. Then Ω = {1, 2}, and P(1) = p, P(2) =
p2 . We must
√ have P(1) + P(2) = √P(Ω) = 1, so p + p2 = 1. This has two solutions:
p = (−1 + 5 )/2 and√ p = (−1 − 5 )/2. Since we must have 0 ≤ p ≤ 1 only one is
allowed: p = (−1 + 5 )/2.
2.12 a This is the same situation as with the three envelopes on the doormat, but
now with ten possibilities. Hence an outcome has probability 1/10! to occur.
2.12 b For the five envelopes labeled 1, 2, 3, 4, 5 there are 5! possible orders, and
for each of these there are 5! possible orders for the envelopes labeled 6, 7, 8, 9, 10.
Hence in total there are 5! · 5! outcomes.

, 29.1 Full solutions 459

2.12 c There are 32·5!·5! outcomes in the event “dream draw.” Hence the probability
is 32 · 5!5!/10! = 32 · 1 · 2 · 3 · 4 · 5/(6 · 7 · 8 · 9 · 10) = 8/63 =12.7 percent.
2.13 a The outcomes are pairs (x, y).

a b c d
The outcome (a, a) has probability 0 to
1 1 1
occur. The outcome (a, b) has probability a 0 12 12 12
1 1 1
1/4 × 1/3 = 1/12 to occur. b 12
0 12 12
1 1 1
The table becomes: c 12 12
0 12
1 1 1
d 12 12 12
0

2.13 b Let C be the event “c is one of the chosen possibilities”. Then C =
{(c, a), (c, b), (a, c), (b, c)}. Hence P(C) = 4/12 = 1/3.
2.14 a Since door a is never opened, P((a, a)) = P((b, a)) = P((c, a)) = 0. If the can-
didate chooses a (which happens with probability 1/3), then the quizmaster chooses
without preference from doors b and c. This yields that P((a, b)) = P((a, c)) = 1/6.
If the candidate chooses b (which happens with probability 1/3), then the quizmas-
ter can only open door c. Hence P((b, c)) = 1/3. Similarly, P((c, b)) = 1/3. Clearly,
P((b, b)) = P((c, c)) = 0.
2.14 b If the candidate chooses a then she or he wins; hence the corresponding
event is {(a, a), (a, b), (a, c)}, and its probability is 1/3.
2.14 c To end with a the candidate should have chosen b or c. So the event is
{(b, c), (c, b)} and P({(b, c), (c, b)}) = 2/3.
2.15 The rule is:

P(A ∪ B ∪ C) = P(A)+P(B)+P(C)−P(A ∩ B)−P(A ∩ C)−P(B ∩ C)+P(A ∩ B ∩ C) .

That this is true can be shown by applying the sum rule twice (and using the set
property (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)):

P(A ∪ B ∪ C) = P((A ∪ B) ∪ C) = P(A ∪ B) + P(C) − P((A ∪ B) ∩ C)
= P(A) + P(B) − P(A ∩ B) + P(C) − P((A ∩ C) ∪ (B ∩ C))
= s − P(A ∩ B) − P((A ∩ C)) − P((B ∩ C)) + P((A ∩ C) ∩ (B ∩ C))
= s − P(A ∩ B) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C) .

Here we did put s := P(A) + P(B) + P(C) for typographical convenience.
2.16 Since E ∩ F ∩ G = ∅, the three sets E ∩ F , F ∩ G, and E ∩ G are disjoint.
Since each has probability 1/3, they have probability 1 together. From these two
facts one deduces P(E) = P(E ∩ F ) + P(E ∩ G) = 2/3 (make a diagram or use that
E = E ∩ (E ∩ F ) ∪ E ∩ (F ∩ G) ∪ E ∩ (E ∩ G)).
2.17 Since there are two queues we use pairs (i, j) of natural numbers to indicate
the number of customers i in the first queue, and the number j in the second queue.
Since we have no reasonable bound on the number of people that will queue, we
take Ω = {(i, j) : i = 0, 1, 2, . . . , j = 0, 1, 2, . . . }.
2.18 The probability r of no success at a certain day is equal to the probability
that both experiments fail, hence r = (1 − p)2 . The probability of success for the
first time on day n therefore equals rn−1 (1 − r). (Cf. Section2.5.)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper 89. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 77858 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,48
  • (0)
  Kopen