100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary probability and statistics

Beoordeling
-
Verkocht
-
Pagina's
10
Geüpload op
19-10-2021
Geschreven in
2019/2020

Summary of the first years course probability and statistics










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 oktober 2021
Aantal pagina's
10
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Contents
1 Chapter 4 2
1.1 Discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Continuous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 more properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Empirical distribution functions . . . . . . . . . . . . . . . . . . . 2

2 Chapter 5 3
2.1 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Bivariate Normal distribution . . . . . . . . . . . . . . . . . . . . 4

3 Chapter 6 4
3.1 CDF-approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 pdf-approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 mgf approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Order statistics and their distribution . . . . . . . . . . . . . . . 5
3.5 Jensen inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 chapter 7 6
4.1 Convergence in terms of densities . . . . . . . . . . . . . . . . . . 6
4.2 Weak law of large numbers (WLLN) . . . . . . . . . . . . . . . . 6
4.3 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 Delta Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Chapter 8 7
5.1 Chi-square distribution . . . . . . . . . . . . . . . . . . . . . . . . 7
5.2 F- distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Chapter 9 8
6.1 Method of moments . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 Method of Maximum likelihood . . . . . . . . . . . . . . . . . . . 9
6.3 quality of estimators . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.4 Cramer-Rao inequality . . . . . . . . . . . . . . . . . . . . . . . . 10




1

, 1 Chapter 4
The k-dimensional discrete random vector (X1 , ...., Xk ) has a density function
defined by:
f (x1 , ......, xk ) = P (X1 = x1 , X2 = x2 , ..., Xk = xk )
We will discuss a few multivariate distributions:
The mutinomial distribution, the extension of the binomial distribution:
xk+1
n!
P (X1 = x1 , X2 = x2 , ..., Xk = xk ) = x1 !∗x2 !∗...x∗k!∗x∗k+1! px1 1 px2 2 ∗ ...... ∗ pk+1




1.1 Discrete case
P P
Theorem: x1 .... xk f (x1 , ..., xk ) = 1 P
Definition for marginal densities: fX2 (x2 ) = allx1 f (x1 , x2 )
Definition: F (x1 , ..., xk ) = P (X1 ≤ x1 , X2 ≤ x2 , ....., Xk ≤ xk
We also can have that:
P (x11 < X1 ≤ x12 , x21 < X2 ≤ x2 2)
= F (x12 , x22 ) − F (x12 , x21 ) − F (x11 , x22 + F (x11 , x21 ), is bigger or equal to zero,
obviously since it is a probability.


1.2 Continuous case
R xk R x1
F (x1 , ...., xk ) = −∞ ..... −∞ f (t1 , ..., tk )dt1 ....dtk
Hence it also holds that:
δk
f (x1 , ....., xk ) = δx .....δx1
F (x1 , ...., xk )
1
Additionally, taking the integral of all xi from −∞ to ∞ is equal to 1.




1.3 more properties
R R
P (X ∈ Region ) = Region f (x1 , x2 )dx1 dx2
For f (and F) we have that k random variables (X1 , ..., Xk ) are said to be inde-
pendent if f (x1 , ..., xk ) = fX1 (x1 ) ∗ ..... ∗ fXk (xk )
Conditional density is: f (x2 |x1 ) = ff(x 1 ,x2 )
X1 (x1 )

For f is a uni variate density function and (X1 , ..., Xn ) an n-dimensional random
vector, if g(x1 , ...., xn ) = f (x1 ) ∗ .... ∗ f (xn ) holds for the joint density g, then
X1 , ..., Xn is said to be a random sample


1.4 Empirical distribution functions
X1:n ≤ X2:nP≤ ... ≤ Xn:n The empirical distribution function is defined by:
n
Fn (x) = n1 i=1 1(−∞,x) (Xi )


2
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jochemnauta

Maak kennis met de verkoper

Seller avatar
jochemnauta Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
4 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen