100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary of all lectures Medicinal Chemistry and Biophysics €12,49
In winkelwagen

Samenvatting

Summary of all lectures Medicinal Chemistry and Biophysics

 45 keer bekeken  3 keer verkocht

Summary of all lecture notes of Medicinal Chemistry and Biophysics

Voorbeeld 4 van de 79  pagina's

  • 27 oktober 2021
  • 79
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (5)
avatar-seller
eliselammers
Medicinal Chemistry and Biophysics
Lecture 1: Introduction and Thermodynamics
Medicijnen oefenen biologische effecten uit, voor specifieke ziektebeelden is er behoefte aan
specifieke medicijnen.

Medicines are chemicals, interacting with proteins.

Medicines are small molecules:
- NCE: new chemical entities.
- BLA: biologics applications.

Medicinal Chemistry is highly interdisciplinary: Chemistry, Biochemistry, Physics, Biophysics, Biology.

Drug companies want to make money.

Medicinal Chemistry: chemistry plays a key role within the pharmacy. Chemical knowledge is
required to:
- To design and determine the physical/chemical properties of drugs.
- To gain insight into the stability of drugs.
- Absorption and excretion of drugs is partly determined by their chemical properties.
- Metabolism of drugs based is on (bio)chemical transformations.
- The formulation of drugs (administration).
- Quality control of medicines.
- The analysis of drugs and their metabolites.
Biophysics: is the use of light, sound or particle emission (waves) to study a (bio) sample.

Proteins are made of amino acids.

The 3D structure determines the biological activity of drugs:
- Membrane passage.
- Binding to targets.
- Metabolism.
- Pharmacokinetics.

Membranes are made of lipids; water cannot get through. The exterior side is polar, the interior side
is non-polar. Passive membrane passage can be estimated/predicted by the log P value, which is
defined by the physical/chemical properties of the drug. Active transport relies on molecular
recognition (shape) by transport proteins.




PH of solute chosen to generate neutral molecules.
Measure of lipophilicity.

,Lipinski’s rule of five:
- Molecular mass less than 500.
- Log(P) less than 5.
- Less than ten hydrogen bond acceptors (-O-, -N- etc).
- Less than five hydrogen bond donors (NH, OH etc).
The more charged a system → the worse the log(p) → the less effective the drug
→ drug design relays much more on H bonds than on charges
Good absorption requires good solubility in both water and in membranes.

Lipids contain a polar head group and a hydrophobic (non-polar) tail.

Drugs bind to targets:
Paul Ehrlich (1854 – 1915) introduced the idea that the biological effect of almost all compounds was
due to it binding to a target (no alcohol receptor). ‘’Bodies do not act if they are not bound.’’

Lock and key:
- Drugs bind to their target molecules (receptors, enzymes etc.) by the Lock and Key principle
– but the process of binding is dynamic
- First formulated in 1894 by Emil Fisher.
- Example of retinol bound to a transport protein.

Thermodynamics and kinetics: binding is described by the same laws as chemical reactions.
Thermodynamics:
- Describes the equilibrium state.
- Parameter → K.

Kinetics:
- Describes the rate (speed) of the process.
- Parameter → k.




The more stable the products, the more there is present at equilibrium.

Types of interaction:
Covalent:
- Association. →




- Dissociation does not occur.
- No equilibrium, only a (kinetic) rate.

,Non-covalent:




Energetic of drug: target interactions:
- Each new interaction provides a change in (delta G) the Gibbs free energy.
- Gibbs free energy (delta G) is the energy required to build the system from nothing.

For a system to happen: reaction has to move from a high affinity state to a low affinity state.
• Gibbs free energy must drop → larger drop = more successful reaction

Energetics of drug-receptor interactions:




Enthalpy (delta H) and entropy (delta S) are driving forces of a reaction.
Drug design is about making delta G as small as possible (-500).
a.As large as possible (+500) b.As small as possible (-500)

dH = H-bonds
-T x dS = hydrophobics (high in exothermic reaction)

Delta H > 0 (heat) energy is absorbed → reaction is endothermic.
Delta H < 0 (heat) is energy is released → reaction is exothermic.

Delta S (entropy) is a measure of the ordering of the system.
• Entropy up, in exothermic reaction

The speed of the reaction depends on the activation energy.
Negative Gibbs free energy → drugs will bind (heat negative, exothermic, energy release)

, 𝑫𝒆𝒍𝒕𝒂𝑮 = 𝑹 𝒙 𝑻 𝒙 𝒍𝒏(𝑲𝒅)
R = gas constant
T = absolute temperature
Non-covalent binding is achieved by many simultaneous interactions between the ligand and the
macromolecule.

Electrostatic interactions (ion-ion):
- Opposite charges attract. → dependent on distance
- Equal charges repel.
- Typical interaction energy 4-8 kcal/mol.
- Geometry plays an important role.
- Contributes to enthalpy.

Ion-ion dipole:
- Hydrogen bonds; specific orientations that can make H bonds (not distance dependent)
- 1-7 kcal/mol.
- Acceptor: O, N, F.
- Donors: OH and NH.
- Contributes to enthalpy.
- Geometry plays an important role.

Hydrophobic interactions (important for the folding of proteins):
- Entropy (solvation) is the driving force. 1 kcal/mol. Specific fit.
- Assembly with minimal disruption of the solvent.
- Hydrogen bonding networks.
- Contributes to the entropy.
- Geometry is less important.

Role of entropy in Binding:
- Through reduced ligand flexibility → lower entropy.
- Removal of solvation shell around both bindings’ partners → increases entropy.

Single bond in a molecule → free rotation possible: higher level of entropy and higher level of
disorder in solution, can occupy many states
• When its bound, cannot longer move → lost entropy

Contribution of hydrophobic interactions to binding: There is no strong correlation but the trend
seems to be that more 'buried' hydrophobic surface leads to stronger binding.

Enthalpy-entropy compensation: Weaker ionic interactions (ΔH) can be compensated for by
improved hydrophobics (ΔS) and vice versa.
• Smaller dG → molecule binds more tightly
• Smaller -T x dS → adding of hydrophobic constituent

Modifications are cumulative:
- Different optimization routes may lead to the same molecule.
- The effect of two independent substituents is cumulative.
- We refer to a ΔΔG (a change in the ΔG).

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper eliselammers. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €12,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€12,49  3x  verkocht
  • (0)
In winkelwagen
Toegevoegd