100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
SAMENVATTING METHODOLOGIE 2; AB_487014; Studie: Gezondheid en Leven €4,09
In winkelwagen

Samenvatting

SAMENVATTING METHODOLOGIE 2; AB_487014; Studie: Gezondheid en Leven

 22 keer bekeken  0 keer verkocht

In deze samenvatting staat alle informatie over de onderwerpen die worden behandeld tijdens het vak Methodologie 2. Statistiek is vaak iets lastigs, waar je veel tijd in moet steken om het te begrijpen. Deze samenvatting met vooral de theorie zorgt ervoor dat je een sterke basis vormt voor het tent...

[Meer zien]

Voorbeeld 4 van de 29  pagina's

  • 2 november 2021
  • 29
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (12)
avatar-seller
jb3802
Kennisclips t-toetsen
wat is een t-toets?
Een t-toets wordt gebruikt in eenvoudige opzetten wanneer de uitkomst kwantitatief is. De
toets wordt ook gebruikt om de gemiddelden van maximaal twee groepen met elkaar te
vergelijken

̅) en
Belangrijk om te weten is dat een t-verdeling gebruikt wordt wanneer het gemiddelde(𝒙
̅ hebt
de standaarddeviatie(sd) onderling onafhankelijk van elkaar zijn. dus als je 𝒙
berekend, zegt dit nog niets over de waarde van sd.

1-steekproef t-toets
Deze gebruik je om te analyseren of het gemiddelde van een steekproef significant verschilt
van een bepaalde waarde(normwaarde). De normwaarde zet je onder de H0.
- Te gebruiken bij een transversale studie

Voorwaarden voor gebruik one-sample t-toets:
1. De gegevens zijn onderling onafhankelijk – dus niet gegroepeerd
2. Schatting voor μ (populatieverwachting) is Normaal verdeeld.

Voorbeeld
Er wordt een onderzoek gedaan naar 14 topsporters met de vraag: Hebben topsporters
gemiddeld een hogere lichaamstemperatuur dan de 37 graden die we bij andere mensen
verwachten?




De toetsingsgrootheid kan worden berekend door:
̅ − μ0
𝒙
t=
sd/√𝑛

het gemiddelde van de steekproef te nemen. Hiervan trek je de verwachtingswaarde onder
de H0 af en dit deel je door de spreiding die past bij het gevonden gemiddelde.

Hierna check je de aannames:
1. Over de onafhankelijkheid van de gegevens is geen informatie gegeven(meestal
staat dat in de methodensectie). We gaan er voor nu vanuit dat ze onafhankelijk zijn.
2. Of het gemiddelde getrokken is uit een normale verdeling is te zien aan een
histogram of Q-Q plot. (kijk dit gwn met het oog).

Nu vullen we de formule in:

, 37,1 − 37 = 1,96
t= Hoeveel bedraagt
0,195/√14 de kans om een
resultaat te vinden
dat 1,96 sd’s of meer afwijkt van de
verwachting onder H0, als het basaal
metabolisme van topsporters en niet-
topsporters in werkelijkheid niet verschilt?

Met SPSS bereken je deze
overschrijdingskans door
Pr(|𝑡| > 1,96)= 0,071 dus die kans is 7,1%.

Omdat de overschrijdingskans > 5%, kan
er niet worden aangetoond dat topsporters een hogere lichaamstemperatuur hebben dan
niet-topsporters(betrouwbaarheid van 95%).

Eventuele kanttekeningen
- Wie zegt dat de populatieverwachting van
lichaamstemperatuur 37 graden is?*
- N = 14 is niet bepaald veel, voor een volgend
onderzoek zou een grotere n handiger zijn.
- Geen informatie over de meetprocedure en de
steekproefname gegeven

Deze betrouwbaarheidsuitspraken kan je ook berekenen
d.m.v. een betrouwbaarheidsinterval:




In de tabel hiernaast kan de t-waarde worden afgelezen,
namelijk 2,160. Dus als we deze vergelijking invullen
krijgen we een BI van: [36,99; 37,21]. *37 graden ligt
binnen dit interval dus dit betekent 37 graden past als
mogelijke populatieparameter.


Gepaarde t-toets
Deze t-toets wordt gebruikt om twee gemiddelden van gepaarde steekproeven met elkaar te
vergelijken.
- Gepaarde steekproeven zijn afhankelijk van elkaar.
- Je vergelijkt twee waarnemingen aan dezelfde eenheid met elkaar
- Te gebruiken bij een prospectieve studie

Voorwaarden voor gebruik paired samples t-toets:
1. Eenheden zijn onderling onafhankelijk – dus niet gegroepeerd
2. Waarnemingen zijn juist wel afhankelijk (binnen eenheid)
3. Het gemiddelde van verschilmetingen is Normaal verdeeld (CLS)
4. Het verschil is onafhankelijk van de meetwaarde op t = 0.

Voorbeeld

,Voor fysieke training verbrand je energie
(exotherm proces). De vraag die wordt gesteld
is: hebben topsporters na een matig intensieve
training een hogere lichaamstemperatuur dan
ervoor?

Wat vaak wordt gedaan bij gepaarde t-toetsen
is dat de gepaarde waarnemingen gereduceerd
worden tot één verschil, waardoor de rest
helemaal hetzelfde is als 1-steekproef t-toets.

Let op: symbolen zijn anders:
𝒙 ̅
̅ -> 𝒅
μ -> ∆

H0= er treedt geen verandering in temperatuur op als topsporters trainen, ofwel ∆ = 0.

Nu gaan we de aannames checken:
1. Over de onafhankelijkheid is niets gezegd (maar we gaan ervan uit)
2. De waarnemingen zijn in paren gedaan
3. Of de d uit een normale verdeling verkregen is, is te zien aan een Q-Q plot of
histogram (blote oog!).
4. Is de verschilscore onafhankelijk? Hiervoor kijken we met het blote oog naar een
grafiek:

➔ Er is geen verband te zien in de
grafiek (denk aan een stijgende lijn
ofzo) dus we kunnen aannemen dat
de verschilscores onafhankelijk zijn.




Nu gaan we de t-waarde berekenen:
̅ − ∆0
𝒅
t=
sd/√𝑛

=
0,14 − 0
t=
0,126/√21


= 5,26

Overschrijdingskans:
Hoeveel bedraagt de kans om een resultaat te vinden dat 5,26 sd’s of meer afwijkt van de
verwachting onder H0, als de lichaamstemperatuur van topsporters niet verandert na
training?
➔ Pr(|𝑡| > 5,26)= 0,000
Dit betekent dat de overschrijdingskans < 5%. Er is dus aangetoond dat de
lichaamstemperatuur van topsporters stijgt bij een matig intensieve training (95
betrouwbaarheid).

, Met deze informatie kan ook een BI worden geconstrueerd:
(df = vrijheidsgraden = n-1 = 21-1 = 20)




De bijbehorende t-waarde is (aflezen uit tabel): 2,086
Wanneer de gegevens in worden gevuld krijgen we een BI van [0,09; 1,18].

2-steekproef t-toets
Een 2-steekproef t-toets (ongepaarde t-toets) gebruik je om te onderzoeken of twee
steekproefgemiddelden significant van elkaar verschillen.
- Je vergelijkt twee groepen met elkaar
- Transversaal cohort
- Patiënt-controleonderzoek
- Prospectief cohort/ Experimenteel onderzoek

Voorwaarden
1. Eenheden zijn binnen de twee groepen onderling afhankelijk
2. Het gemiddelde van beide groepen is Normaal verdeeld (CLS)
3. Voor de ‘pooled variance t-test’: beide groepen zijn getrokken uit populaties met
identieke spreiding (hoewel er een oplossing bestaat als dit niet het geval is.
4. Wanneer we een 2-steekproef t-toets op verschilscores doen, dan zijn de
verschilscores onafhankelijk van de meetwaarde op t=0 (analoog aan de gepaarde t-
toets)

Voorbeeld
Stel: bij inspanning lijkt het erop dat de lichaamstemperatuur licht toeneemt. Topsporters zijn
meer gewend aan inspanning. Wellicht is een topsporterslichaam beter in staat de
lichaamstemperatuur te controleren.
Onderzoeksvraag is dan als volgt: Zou het dan ook zo zijn dat topsporters bij een
gestandaardiseerde training een kleinere toename ervaren dan recreanten?

Proefopzet:
- 15 topsporters werden bereid gevonden; 12 recreatief
- Bij elke sporter werd voor en na de training de lichaamstemperatuur gemeten
- Voor elke deelnemer werd d= x1 – x0 bepaald.




Hieraan kunnen we zien dat de topsporters aan de lagere temperatuur stijgen, maar de
vraag is of dit statistisch sterk genoeg is. Daarvoor dus de t-toets.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jb3802. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,09. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 50843 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,09
  • (0)
In winkelwagen
Toegevoegd