100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Class Notes Data Structures (2IL) €3,99   In winkelwagen

College aantekeningen

Class Notes Data Structures (2IL)

 24 keer bekeken  1 keer verkocht

Class notes on the lectures of Data Structures given by Prof. Dr. Bettina Speckmann. In the notes, there are images of the important algorithms mentioned in the lecture and all important computation.

Voorbeeld 4 van de 33  pagina's

  • 24 november 2021
  • 33
  • 2020/2021
  • College aantekeningen
  • Prof. dr. bettina speckmann
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
datasciencestudent
Data structures
An introducti on to Algorithms and data structures

log ( n )=log 2 (n)




-

,Sorting
In the sorting problem there is:
- Input: A sequence of n numbers ⟨ a1 , … , an ⟩
- Output: A permutation of the input such that ⟨ ai 1 ≤… ≤ a¿ ⟩

The input is stored in arrays; a collection of objects stored in linear order
accessible by an integer index. A[1] is the first element of the array. A[1. . k ] is
the subarray of array A with elements 1 till k . The numbers are the keys.
Additional information is called satellite data.
 set ( A , i, x ) → A [ i ] =x; this is one operation
 get ( A , i ) → x=A [ i ]; this is one operation
 Create array A → A=new Array [n]; n + 1 operations

Abstract Data Type (ADT) for the sorting problem that maintains a set S of n
elements, tracks the order of the elements and lets us exchange the order of the
elements. This is a set of data values and associated operations that are
precisely specified independent of any particular implementation.

A description of an algorithm should contain:
1. The algorithm; English/Pseudocode
2. The correctness; proof
3. The running time; derivation

InsertionSort: like sorting a hand of playing cards.
- Good to sort a small number of elements
- It is an incremental algorithm: process the input
elements one-by-one and maintain the solution for the
elements processed so far.
- It is also an inplace algorithm: the numbers are
rearranged within the array with only constant extra
space.

Use a loop invariant to understand why an algorithm gives the correct answers.
An example:
Loop invariant for InsertionSort: at the start of an iteration j of the “outer” for-
loop the subarray A[1 … j−1] consists of the elements originally in A[1 … j−1] but
in sorted order.

To prove correctness with a loop invariant, show three things:
1. Initialization: loop invariant is true prior to the first iteration of the loop.
2. Maintenance: if the loop invariant is true before an iteration of the loop, it
remains true before the next iteration.
3. Termination: when the loop terminates, the loop invariant gives us a
useful property that helps show that the algorithm
is correct.

MergeSort: A divide-and-conquer sorting algorithm
Divide-and-conquer: first, break the problem into two
or more subproblems. Then, solve the subproblems
recursively. And then combine these solutions to create a
solution to the original problem.

,Induction is a way of proving the correctness. It contains proof that the base
case is solved correctly and has proof that if all subproblems are solved correctly,
then the complete problem is solved correctly. It should contain: base case,
inductive hypothesis, inductive step, conclusion.



Analysis of algorithms
To analyse the running time as a function of n, you should look at the:
 Best case
 Average case
 Worst cage

An algorithm has worst case running time T (n) if for any input of size n the
maximal number of elementary operations executed is T (n). Elementary
operations are: add, subtract, multiply, divide, load, store, copy, branch, return,
etc…

The rate of growth (order of growth) of the running time is far more important
than constants: Θ(n).
- InsertionSort: Θ(n 2), small values before n^2
- MergeSort: Θ ( n log ( n ) ), large values before n log n

The Θ -notation: concentrate on the leading term and ignore constants. For
example, 19 n3 +17 n2−3 n becomes Θ ( n3 ) and 2 n log ( n ) +5 n1.1−5 becomes Θ ( n1.1 ), as
polynomials rule. If the functions does not grow (it goes down), there is no
growth.

Logarithmic properties for a , b , c >0 :
- log c ( ab )=log c ( a ) + log c ( b )
log c ( a )=b∗log c ( a )
b
-
- log a (b)=log c ( b ) / log c ( a )

Properties for growth:
 Logarithmic functions grow slower than polynomial functions
 Polynomial functions grow slower than exponential functions

Linear Search:
- Input: increasing sequence of n numbers; A=⟨ a1 ,… ,a n ⟩ and
value v
- Output: an index i such that A [ i ] =v or NIL if v is not in A
- Running time:
o Best case: 1
o Average case: n /2 (if successful)
o Worst case: n

Binary search:
- Input: increasing sequence of n numbers;
A=⟨ a1 ,… ,a n ⟩ and value v

, - Output: an index i such that A [ i ] =v or NIL if v is not in A
- Running time:
o Best case: 1
o Average case: log ⁡(n)
o Worst case: log ⁡(n)
 It is constantly halving the sequence. This is only possible for
log ⁡(n) times.




The Θ -notation: Θ ( g ( n ) ) is the set of functions that grow as fast as
g ( n ).
It is an asymptotically tight bound. Let g ( n ) : N → N be a function. Then
we have Θ ( g ( n ) )={f ( n ) : there exist positive constants c 1 , c2 , and n0 such
that c 1 g ( n ) ≤ f ( n ) ≤ c 2 g(n) for all n ≥ n0 }.
Notation: f ( n )=Θ( g ( n ) )
Example:
- Claim: 19 n3 +17 n2−3 n=Θ(n3 )
- Proof: Choose c 1=19 , c 2=19+17=36 and n0 =1.
Then we have for all n ≥ n0 :




- Claim: 3
19 n +17 n −3 n ≠ Θ(n )
2 2


- Proof by contradiction: Assume there are positive constants c 1 , c2 , n0 such
that for all n ≥ n0




The O -notation: O ( g ( n ) ) is the set of functions that grow at most as fast as g ( n ) .
It is an asymptotically upper bound of Θ . Let g ( n ) : N → N be a function. Then we
have O ( g ( n ) )={f ( n ) : there exist positive constants c , n0 such that f ( n ) ≤ cg (n) for all
n ≥ n0 }.
There is an other notation: o ( n ) → grows strictly slower than…

The Ω -notation: Ω ( g ( n ) ) is the set of functions that grow at least as fast as g ( n ) .
It is an asymptotically lower bound of Θ . Let g ( n ) : N → N be a function. Then we
have Ω ( g ( n ) ) ={f ( n ) : there exist positive constants c , n0 such that cg (n)≤ f ( n ) for all
n ≥ n0 }.
There is an other notation: ω ( n ) → grows strictly faster than…

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper datasciencestudent. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 66579 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99  1x  verkocht
  • (0)
  Kopen