H1
A network G has 2 parts:
1. A set of N elements: Nodes
2. A set of L pairs of nodes: Links or Edges. The link (i, j) joins the nodes i and j.
A network can be directed (gericht) or undirected (ongericht):
- In directed networks, links are called direct links and the order in a link reflects the direction
- in undirected networks, links are bi-directional and the order does not matter.
A network can be weighted (gewogen) or unweighted (ongewogen): in weighted networks, links have an associated
weight. (e-mail communications, more emails between persons, heavier link)
Other network types:
- Bipartite network: two groups of nodes where links only connect to nodes from different groups.
- Multiplex network: a network with multiple types of links
Number of links in networks:
- The maximum number of links in an undirected network with N nodes is the number of distinct pairs of
n∗(n−1)
nodes: L =
2
- In a directed network, each pair of nodes should be counted twice, once for each direction, so
- L = n * (n-1)
- A bipartite network is complete if each node in one group is connected to all nodes in the other group. In this
case Lmax = N1 × N2
Density:
- The density of a network with N nodes and L links is: d = L/ Lmax
2L
- In an undirected network the density is: d = L/ Lmax =
N ( N−1)
L
- In an directed network the density isL d = L/ Lmax =
N ( N−1)
In a complete network, d = 1, since L = Lmax
in a sparse network, L < Lmax and therefore d < 1
If the number of links grows proportionally to the number of nodes (L ~ N), the network is sparse.
If the number of links grows faster to the number of nodes (L ~ N 2 ) , the network is dense.
Subnetworks
A subset of a network is called a subnetwork. A subnetwork is obtained by selecting a subset of the nodes and all the
links between those nodes.
A clique is a complete subnetwork: a subset of nodes all connected to each other. Any subset of a complete
network is a clique because all pairs of nodes are connected and therefore all pairs of nodes in any subnetwork are
connected.
Degree
The degree of a node is the number of links or neighbours. A node with no neighbours has a degree of 0 (k = 0) and is
called a singleton. The average degree of a network is denoted by K. The average degree of a network is defined as
❑
∑ Ki . K=
2 L dN (N −1)
= =d (N−1)
i
k= N N
N
Directed networks
In a graphical representation of a network, the direction of a link is indicated by an arrow. The presence of a link in a
directed network does not necessarily imply the presence of a link in the opposite direction. For the degree of a node
in a directed network, we have to think of incoming and outgoing links separately:
- The number of incoming links of node i is called the in-degree and denoted by k iin
- The number of outgoing links of node i is called the out-degree and denoted by k iout
Weighted networks
In a graphical representation of a network, the weight of a link is represented by the thickness of a line. A weight of
zero is equivalent to the absence of a link. A weighted network can be directed or undirected:
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper matthiaslouws. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.