Samenvatting voor waarschijnlijkheidsrekening en statistiek.
41 keer bekeken 0 keer verkocht
Vak
Waarschijnlijkheidsrekening en statistiek
Instelling
Universiteit Gent (UGent)
Boek
Student Solutions Manual for Probability and Statistics
Van het begin tot einde staan de belangrijkste formules/concepten stuk voor stuk uitgelegd. Enkel het stukje regressie is niet meegenomen in de samenvatting omdat ik het zelf niet voldoende snapte om er een deftig kloppende samenvatting van te maken.
1. Een gebeurtenis is een deelverzameling van de steekproefruimte
2. Wetten van de Morgan:
( A ∪ B )C = AC ∩ BC en ( A ∩ B )C =A C ∪BC
3. Distributiviteit
A ∩ ( B∪C )=( A ∩ B) ∪( A ∩C )
4. P ( A ∪ B ∪C )=P ( A ) + P ( B ) + P ( C )−P ( A ∩ B ) −P ( B ∩C )−P ( A ∩ C ) + P( A ∩ B ∩C)
5. Massafunctie slaat op één element uit de steekproefruimte dus bv f(s)
6. Waarschijnlijkheidsmaat P slaat op een gebeurtenis een deelverzameling van de
steekproefruimte
7. Eenvoudige steekproefruimte alle elementen hebben dezelfde
8. waarschijnlijkheid
H2 conditionele waarschijnlijkheid
1. P ( A 1 ∩ A 2 ∩ … A n )=P ( A ) ∙ P ( A2| A 1) ∙ … ∙ P ( A n| A 1 ∩ A 2 ∩ An−1 ) zie verband met
bomen(als je weet dat A1…An onafhankelijk is dan kan je gewoon de schrijven =
P(A1)∙…..∙P(An))
2. Wet van totale waarschijnlijkheid nog niet onbelangrijk!!!(wordt vervolgd in thema 3) P(A)
= P( P ( K 1 ) + P ( K n ) +…+ P( K n) met kn de partities van de steekproefruimte
3. Stelling van Bayes kan ook worden gebruik om een omgekeerde conditionele
waarschijnlijkheidsmaat.
4. Stel dat A en B onafhankelijk zijn dan zijn Ac en B dat ook en daaruit volgt dat A C en BC ook
onafhankelijk zijn
1
, H3 toevallige veranderlijken
1. fY= ∫ f X ,Y (x , y )dx = ∫ f Y ∨X ( y ∨x)f X ( x)dx
2. wanneer X en Y afhankelijk zijn en met andere woorden dus geen RH vormen. Kan f Y ∨X ( y|x )
gevonden worden door de regel van bayes toe te passen dan krijgen we de volgende vgl:
f X ∨Y ( x , y )
f Y ∨X ( y|x ) =
f ( y)
3. fractielen opletten want voor een fractiel geldt steeds dat het de eerste waarde van x is
waarvoor alpha wordt bereikt dus oneindig is geen alpha = 1 fractiel het alpha 1 fractiel is
dus de allereerste waarde waarvoor geldt dat de distributiefunctie gelijk is aan 1
4. Transformaties van toevallige veranderlijke: (er moet wel een bijectief verband tussen x en y
bestaan)
a. Bij discrete toevalliger veranderlijken worden de densiteiten gegeven door x te
veranderen in de functie waaraan x gelijk is
b. Bij continu toevallige veranderlijken is de densiteit van de nieuwe reële toevallige
veranderlijke gelijk aan de densiteit van de functie waaraan x gelijk is maal de
Jacobiaan die gevonden wordt door de functie waaraan x gelijk is af te leiden naar
y(zo Jacobiaan van in ANA 2) let hierbij goed op het bestaansgebied van Y
c. Nog een extra stelling die waarschijnlijk wel is van pas komt : wanneer je
verschillende onafhankelijke toevallige veranderlijken X 1 X2 … Xk hebt dan geldt dat Y1
Y2 … Yk ook onafhankelijk zijn als er een bijectieve afbeelding loopt tussen de 2
5. Opletten bij een discrete functie is P(X=iets)=f X(iets) bij continu is dat niet zo
6. Als x en y logisch onafhankelijk of onafhankelijk zijn dan wil dat niet zeggen dat u en v
functies van X en Y dat per definitie ook zijn
2
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Pietverstraete. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.