Voorkeur H. Jeffreys begint eenvoudig een waarschijnlijkheid is bij conventie een
getal die gelegen is tussen 0 en 1
In welke mate kan een gebeurtenis voorkomt = subjectief getal MAAR daarom niet
bruikbaar
Onderscheid tussen waarschijnlijkheid
1. Gewone waarschijnlijkheid: bv. je staat op zonder de radio, weerbericht, … wat
moet ik aan doen? Gaat het regenen, zon, …? Intuïtief (subjectief) maak ik een
beoordeling en ik stel de kans op mooi weer is 60% = puur subjectieve
inschatting
2. Conditionele waarschijnlijkheid: op voorhand (in het verleden) naar het
weerbericht kijken en dan beslissen wat aan te doen = meestal betrouwbaar
opnieuw inschatting maken welk weer het gaat zijn maar beïnvloed door
voorkennis = conditioneel
De uitwerking niet kennen!!
Hoe rekenen met waarschijnlijkheden? Niet kennen wij gaan enkel zien hoe om er
mee om te gaan?
2.3 Stelling Bayes
Belangrijke stelling omdat confrontatie op een contra-intuïtieve manier
P = waarschijnlijkheid
A = gebeurtenis, toestand
/ = voorkennis die je hebt
Bv. A hoge temperatuur en B de zon schijnt als ik weet dat er een hoge
temperatuur is wat is dan de waarschijnlijkheid dat de zon schijnt?
P(AB)/ P(B): conditionele AB waarschijnlijkheid kan je uitdrukken in niet
conditionele waarschijnlijkheid??
P(BA)=P(BA):
Ipv met AB te werken kan je ook werken met hypothesen
Ik wil weten of een wetenschappelijke hypothese waar is?
Hoe? Bv. een bacterie wou een maagzweer kunnen veroorzaken men gaat dan
op zoek naar gegevens
Voorbeeld:
Stel 2 zakken met zak 1 (hypothese 1) = 150 goud en 50 zilver en zak 2 (hypothese 2)
= 100 goud en 200 zilver
Iemand neemt een muntstuk uit een zak? Wat is de kans dat het muntstuk uit de eerste
zak komt?
Kans uit 1ste zak is groter want meer goud in deze zak
Als ik uit de eerste kans heb getrokken dan is de kans …
Als je verhoudingen omdraait dan heb je de oplossing volgens de stelling
Sensitiviteit en specificiteit = nauwkeurigheid van een voorspelling
Hoe goed of hoe slecht werkt iets? Niet zomaar vertrouwen maar naar de algemene
kans krijgen
,Problems
2.1 pag 54
Task 1
Ga je de test kopen of niet om te weten of je de ziekte hebt of niet? Zie oplossing pag.
493
(P+) = de kans om positief te testen
+D = kans positief te testen gegeven de data (sensitiviteit)
P (D) = prevalentie ziekte voorkomen?
= kans is bedroevend laag dat je de ziekte gaat hebben omdat de prevalentie zo extreem
laag is
2.4
Als je niet goed weet welke vergelijkingen je moet gebruiken om tot een
waarschijnlijkheid te komen
Dan kun je simulaties maken bv. gooien met dobbelstenen en zien hoe vaak komt het
voor
Als je niet alle mogelijkheden kunt uitputten
Problems
Verklaring: kleiner ziekenhuis minder geboorten meer waarschijnlijkheid dat meer
dan 60% jongens zijn dan in een groter ziekenhuis
Zie handboek problems
Chapter 2 babies
Grafiek meest linkse bolletje eerst dag dat gesimuleerd werd
Gemiddelde gaat configureren naar het juiste getal als je maar voldoende simulaties doet
Kleine ziekenhuis: 0%
Hoe meer simulaties hoe beter, niet alleen van belang hoeveel simulaties we doen MAAR
,Les 3 1/10/2019
3. Probability issues/ modules we gaan model bouwen gebaseerd op
mathematische formules
Je zou de titel kunnen vervangen door …
Bv. autosalon maand voor het autosalon verkoop je weinig, tijdens meer verkoop en
maanden erna minder
Wat met de som?
Weegt de meer verkoop met de investering?
Bestaande modellen gaan we gebruiken op het juiste tijdstip verdelingen zien als het
hart van een statistisch model, neem dus de verdeling er uit en dan heb je geen model
meer
Wat was er eerst? Beschrijvende statistiek of waarschijnlijkheidsverdelingen?
3.1 Stastical measures
Modus = meest voorkomende waarde het cijfer dat het vaakste voorkomt
Variantie = mate waarin de gegevens gespreid liggen maar dan wel rond het gemiddelde
maanden waar je meer of minder verkoopt dan het gemiddelde? Dan heb je grote
variantie en als dit niet zo is kleine variantie
Skewness (scheefheid) belangrijke kenmerken van wssheidsverdelingen
Als grafiek symmetrisch is: verticaal in 2 splitsen en links en recht is spiegelbeeld
Skweness = 0 dan symmetrisch
Kurtosis = mate waarin de verdeling een top heeft, piek heeft beter interpreteren in de
termen van de staarten van de verdeling omdat het venijn in de staart zitten hoe
groot zijn de staarten
Meer voorlopig niet kennen
Gecenterde zien we niet
3.2 Discrete distributions
Grenouille = model en stelt dat er maar 2 mogelijkheden zijn
Discreet want meer 2 mogelijke uitkomsten
Variabele verdeling: bv. de geboorte van de mens: man of vrouw
Er is een kans dat er een meisje wordt geboren of een jongen
Uitkomst van de variabele (X) kan gelijk zijn aan 1 = succes (geboorte meisje)
hiervoor heb je een bepaalde wss dat dit gebeurt
1-b = faling (geboorte jongen)
2 uitkomsten = discrete verdeling
Hiervan kan je het gemiddelde, mediaan, … berekenen
Nut?
, Geen nut gewoon de link leggen met het vorig hoofdstuk
3.2.2 biniomal verdeling: super belangrijk
5 uitroepteken = 5 x 4 x 3 x 2 x 1
Wat zegt de verdeling? Als je een bernouille experiment hebt en je herhaalt dit een
aantal keer op een onafhankelijke manier
Eerste keer succes wil niet zeggen dat je volgende keer ook een succes gaat hebben,
geen invloed op elkaar
Wat is de kans na de herhalingen dat het aantal successen x gelijk is aan het getal y?
Vorige les vb gezien over ziekenhuis: geboorten = grenouille want maar 2
veronderstellingen
Je kan kans op succes exact berekenen mathematisch berekenen
= statistisch model om een uitspraak te doen
Je hoeft niet te stimuleren maar via deze theorie kan je het berekenen
3.2.2.7 voorbeeld
Ik heb keuze tussen 2 situaties: ik gebruik simulaties of het model voorkeur model als
je weet dat het model geschikt/ gepast is maak een veronderstelling en dan kan je
kiezen wat je kiest
Wat kan er mislopen bij de biniomaal verdeling van de baby’s met de assumptie dat dit
probleem kan worden opgelost? Geboortes moeten onafhankelijk zijn van elkaar anders
kan je dit stastisch model niet gebruiken
Hoe kan het in de praktijk mislopen? Bv. op het platteland waar veel vervuiling is en een
invloed hebben op de geboortes geboortes zijn dan niet onafhankelijk van elkaar je
mag ze niet loskopellen van elkaar en kan je dus deze methode niet gebruiken
Ander voorbeeld:
Bv. productiebedrijf aan de lopende band stel producten succesvol geassembleerd
Stel klant die 1000 stuks nodig heeft en je weet dat de grondstoffen soms niet voldoen
en dan moet je dus meer produceren je kan nu bereken hoeveel % kans misloopt? Op
voorwaarde dat de onafhankelijkheid bewaart blijft. De band loopt bv. niet meer verder is
niet onafhankelijk.
Continue verdelingen op horizontale as continue verdeling
Uniforme verdelingen/ rechthoekige verdelingen???
3.3.1
Dichtheidsfunctie: oppervlakte onder de curve = 1 dan kan je
waarschijnlijkheidsuitspraken doen
Elk punt tussen a en b heeft dezelfde wss
Vb. Digitale pc werkt obv random getallen hierop gebaseerd
Nuttig? Voor simulaties want zo hebben we een uniforme verdeling om van te vertrekken
We genereren random getallen en met deze getallen ??????
= basismodel: alles heeft evenveel kans
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper audecloetens. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.