Organische chemie samenvatting
Week 1 (H1, H2 EN H4)
• Organische chemie = Organische chemie of koolstofchemie is de tak van de
scheikunde die zich bezighoudt met organische verbindingen; dat wil zeggen
chemische verbindingen die koolstof - en waterstofatomen bevatten.
• C, N, O EN H = belangrijkste elementen organische chemie
• Eerste organische chemie – ontdekking vetzuur en synthese van rehan (buiten het
lichaam ureum maken)
Organische chemie (2020)
• 18000 organische moleculen
• Alifatisch (ketens) – verzadigd (alkanen) en onverzadigd (alkenen)
• Cyclische moleculen – verzadigd en onverzadigd (aromatisch en niet-aromatisch)
Voorkennis vorig jaar
• Additie reactie = toevoegen
• Eliminatie reactie = verwijderen
• Substitutie reactie = vervangen
• Omleggingsreactie = omleggen of rangschikken; veranderen ketenordening of positie
zijketens
• Polymerisatiereactie = (Poly = veel) binden van enkele monomeren om een lange
keten te krijgen
• Covalente binding: gezamenlijk negatief elektronenpaar houdt positieve atoomresten
bij elkaar
• Enkel atoombinding = sigma binding
• Dubbele atoombinding = pi- en sigmabinding
Tekenen van structuren
, • Oxidatie level = afhankelijk van type koolstof-Y binding
• Op atomair niveau
• Alleen C-H of C-C binding = oxidatie level 0
• Zogenaamde alkaan oxidatie level
• Link prioriteit hoofdgroep (functie kennis over prioritieten groepen)
Waarbij Y een hetero-atoom is (≠ H)
• 1 C-Y binding => oxidatie level 1
– alcohol, ether, amine, alkyl halide, alkeen
• 2 C-Y binding => oxidatie level 2
– aldehyde, keton, acetaal, alkyn
• 3 C-Y binding => oxidatie level 3 (zie plaatje)
– Carbonzuur, ester, amide, nitril, zuurhalide
• 4 C-Y binding => oxidatie level 4
– CO2, carbonaat, tetrahalokoolstoffen, urea
,Link prioriteit hoofdgroep – van hoogste oxidatielevel naar laagste
Kijk naar het aantal bindingen van het koolstofatoom aan een ander atoom dan koolstof en
waterstof
H4- structuur van moleculen
• Heisenbergs onzekerheidsprincipe:
• Elektronen bevinden
zich ergens in de
orbitalen
(golf, zwarte deel)
Feiten over orbitalen:
1. Orbitals do not need to have electrons in them—they can be vacant (there doesn’t have to be someone
standing on a stair for it to exist). Helium’s two electrons fill only the 1s orbital, but an input of energy—the
intense heat in the sun, for example—will make one of them hop up into the previously empty 2s, or 2p, or
3s... etc. orbitals waiting to receive them. In fact, it was observing, from earth, the energy absorbed by this
process which led to the first discovery of helium in the sun.
2. Electrons may be found anywhere in an orbital except in a node. In a p orbital containing one electron, this
electron may be found on either side but never in the middle. When the orbital contains two electrons, one
electron doesn’t stay in one half and the other electron in the other half—both electrons could be anywhere
(except in the node).
3. All these orbitals of an atom are superimposed on each other. The 1s orbital is not the middle part of the 2s
orbital. The 1s and 2s orbitals are separate orbitals in their own rights and each can hold a maximum of two
electrons but the 2s orbital does occupy some of the same space as the 1s orbital (and also as the 2p orbitals,
come to that). Neon, for example, has ten electrons in total: two will be in the 1s orbital, two in the (much
bigger) 2s orbital, and two in each of the three 2p orbitals. All these orbitals are superimposed on each other.
, 4. As we move across subsequent rows of the periodic table—starting with sodium—the 1s, 2s, and 2p orbitals
are already filled with electrons, so we must start putting electrons into the 3s and 3p orbitals, then the 4s,
3d, and 4p orbitals. With d orbitals (and f orbitals, which start to be filled in the lanthanide series) there are
yet further new arrangements of nodes. We won’t be discussing these orbitals in detail—you will find
detailed consideration in an inorganic textbook—but the principles are just the same as the simple
arrangements we have described.
Lineaire combinatie atomaire orbitalen
• Overlap orbitalen in fase => bonding
• Overlap niet in fase => anti-bonding
• Lineaire combinatie = totale AO (atomic orbitalen) komt overeen met MO (molecular
orbitalen)
– Bijv 1 AO H (atoom) + 1 AO H (atoom) = 2 MO H2 (molecuul)
• Opvullen MO gebeurt van onderaf aan
• Per MO maximaal 2 e- met anti-spin
– Opvullen volgens Hund’s regel:
Tekenen van MO (molecular orbitals)