I have summarized Chapters 5, 6, 7, 8, and 9, along with differential equation notes (labeled chapter 10 in my notes) spread out across the book. This is more rigorous than a standard course in integral calculus. I wasn't a fan of the calculus 2 offered at my school, so I followed the textbook of U...
5 Integration
5.1 Sums and Sigma Notation
De
nition 1 Sigma Notation
If m and n are integers with m ≤ n, and if f is a function de
ned at the integers m, m + 1, m +
2, ..., n, the symbol ni=m f (i) represents the sum of the values of f at those integers:
P
n
X
f (i) = f (m) + f (m + 1) + f (m + 2) + · · · + f (n).
i=m
The explicit sum appearing pn the right side of the equation is the expansion of the sum
represented in sigma notation on the left side.
Note i is the index of summation, use i = j + m for all i. The index of summation is a
dummy variable. The limits of summation: m is the lower limit, and n is the upper limit.
Theorem 5.1 Summation Formulas (Closed Form)
n
X
1 = 1 + 1 + 1 + · · · + 1 = n, (n terms)
i=1
n
X n(n + 1)
i = 1 + 2 + 3 + ··· + n =
i=1
2
n
X n(n + 1)(2n + 1)
i2 = 12 + 22 + 32 + · · · + n2 =
i=1
6
n
X rn − 1
ri−1 = 1 + r + r2 + r3 + · · · + rn−1 =
i=1
r−1
A sum of the form ni=m (f (i + 1) − f (i)) telescopes out to the closed form f (n + 1) − f (m)
P
because all but the
rst and last terms cancel out, this is called a telescoping sum.
5.2 Areas as Limits of Sums
The Basic Area Problem
Divide [a, b] into n subintervals:
a = x0 < x1 < x2 < · · · < xn = b.
Denote by ∆xi the length of the ith subinterval [xi−1 , xi ]:
∆xi = xi − xi−1 , (i = 1, 2, 3, ..., n).
Then build a rectangle with width ∆xi and height f (xi ). The sum of these areas is given by:
n
X
Sn = f (x1 )∆x1 + f (x2 )∆x2 + f (x3 )∆x3 + · · · + f (xn )∆xn = f (xi )∆xi .
i=1
1
, Thus, Area of R = limn→∞ Sn , where max ∆xi → 0.
For equal subinterval lengths,
b−a i
∆xi = ∆x = , xi = a + i∆x = a + (b − a).
n n
5.3 The De
nite Integral
Let P be a
nite set of point arranged in order from a to b on the real line, thus
P = {x0 , x1 , x2 , ..., xn },
is called a partition of [a, b].
n depends on the partition, so n = n(P ), with length ∆xi , (f or 1 ≤ i ≤ n), where the greatest
of these numbers is the norm of P , denoted:
kP k = max ∆xi .
De
nition 2 Upper and Lower Riemann Sums
The lower Riemann sum, L(f, P ), and the upper Riemann sum, U (f, P ), for the function
f and the partition P are de
ned by:
n
X
L(f, P ) = f (l1 )∆x1 + · · · + f (ln )∆xn = f (li )∆xi ,
i=1
n
X
U (f, P ) = f (u1 )∆x1 + · · · + f (un )∆xn = f (ui )∆xi .
i=1
De
nition 3 The De
nite Integral
Suppose there is exactly one number I such that for every partition P of [a, b] we have
L(f, P ) ≤ I ≤ U (f, P ).
Then we say that the function f is integrable on [a, b], and we call I the de
nite integral
of f on [a, b]. The de
nite integral is denoted by the symbol
Z b
I= f (x)dx.
a
The dummy variable of the de
nite integral is x.
For all partitions P of [a, b], we have
Z b
L(f, P ) ≤ f (x)dx ≤ U (f, P )
a
Given a partition P having kP k = max ∆xi , chose a point ci (called a tag ) in each subinterval
and let c = (c1 , c2 , ..., cn ) denote the set of these tags. The sum
n
X
R(f, P, c) = f (ci )∆xi = f (c1 )∆x1 + · · · + f (cn )∆xn
i=1
2
, is called the Riemann sum of f on [a, b] corresponding to partition P and tags c.
The limit of a Riemann sum is the de
nite integral, that is
Z b
lim R(f, P, c) = f (x)dx
n(P )→∞, kP k→0 a
Theorem 5.2 If f is continuous on [a, b], then f is integrable on [a, b].
It is su
cient that, for any given , we should be able to
nd a partition P of [a, b] for which
U (f, P ) − L(f, P ) < , this restricts there to be only one I .
5.4 Properties of the De
nite Integral
If a > b, we have ∆xi < 0 for each i, so the integral will be negative for positive functions f and
vise versa.
Theorem 5.3 Properties of the De
nite Integral
Let f and g be integrable on an interval containing the points a, b, and c. Then
(a) An integral over an interval of zero length is zero.
Z a
f (x)dx = 0.
a
(b) Reversing the limits of integration changes the sign of the integral.
Z a Z b
f (x)dx = − f (x)dx.
b a
(c) An integral depends linearly on the integrand. If A and B are constants, then
Z b Z b Z b
(Af (x) + Bg(x))dx = A f (x)dx + B g(x)dx.
a a a
(d) An integral depends additively on the interval of integration.
Z b Z c Z c
f (x)dx + f (x)dx = f (x)dx.
a b a
(e) If a ≤ b and f (x) ≤ g(x) for a ≤ x ≤ b, then
Z b Z b
f (x)dx ≤ g(x)dx.
a a
(f) The triangle inequality for sums extends to de
nite integrals. If a ≤ b, then
Z b Z b
f (x)dx ≤ |f (x)|dx.
a a
(g) The integral of an odd function over an interval symmetric about zero is zero. If f is an
odd function, then Z a
f (x)dx = 0.
−a
3
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper TheQuantitativeNoteMan. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €12,22. Je zit daarna nergens aan vast.