100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete Techniek Röntgen, CT, Nucleaire Geneeskunde, PET Samenvatting €5,48
In winkelwagen

Samenvatting

Complete Techniek Röntgen, CT, Nucleaire Geneeskunde, PET Samenvatting

 14 keer bekeken  0 keer verkocht

Complete Techniek Röntgen, CT, Nucleaire Geneeskunde, PET Samenvatting. Geschikt voor o.a. de studie Technische Geneeskunde op de Universiteit Twente (UT) in Enschede. Onderwerpen als activiteit, radiactiviteit, PET-scan, Nucleaire Geneeskunde, CT en Röntgen worden behandeld.

Voorbeeld 4 van de 45  pagina's

  • Nee
  • Röntgen, ct, nucleaire geneeskunde
  • 27 januari 2022
  • 45
  • 2021/2022
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)
avatar-seller
exsamenvattingtg
Techniek Longen
Röntgenstraling (X-Ray)
Projectie radiografie (X-Ray)
Röntgen beeldvorming
Computed Tomografie (CT)
Positron Emissie Tomografie (PET)
Nucleaire geneeskunde

,Röntgenstraling (X-Ray)
Röntgenstraling productie

Röntgenstraling zijn elektromagnetische golven van een hoge frequentie. De energie van
hoogfrequente golven is groot, waardoor deze golven in staat zijn om atomen te ioniseren.
Elektromagnetische straling heeft een energie:

E=h ∙ f
Waarbij E de energie (eV), h de constante van Planck (eVs) en f de frequentie (1/s).

Constante van Planck :4,135 ∙ 10−15 eV ∙ seV ∙ s=6,63 ∙ 10−34 J ∙ s




In de medische diagnostiek liggen de Röntgenstralen in het
bereik van 40-120 keV. De golflengte (c= λ ∙ f ) ligt daarmee
ongeveer in het bereik 0,1 nm (bij 12,4 keV) - 0,01 nm (bij
124 keV).

De stopping power is een maat voor de mogelijkheid van de
materie om een elektron in de Röntgenbuis af te remmen.
De stopping power is enorm afhankelijk van de energie van
het elektron.



Een Röntgenbuis is vacuüm en bevat
een anode en kathode waar een
spanning tussen staat. De spanning
tussen de kathode en anode ligt
ongeveer in het bereik van 30-100 kV.
De kathode wordt warm gemaakt,
waardoor elektroden makkelijker de
kathode verlaten en richting de anode
bewegen. Bij botsing van het elektron
met de anode, ontstaan Röntgenstralen.

Kathode: In normale situatie positief. Tijdens opladen is een kathode negatief.
Anode: In normale situatie negatief. Tijdens opladen is een anode positief.

,Vuistregel: 10 mR (milli Röntgen) per mAs (milli ampère seconde)

Versnelling elektronen

Een elektron uit het filament (kathode) versnelt richting het target (anode).

Massa-energie vergelijking

De versnelling van een elektron is te berekenen met de massa-energie vergelijking:
2
E=m∙ c
Waarbij E het potentiaalverschil (J), m de massa (kg) en c de lichtsnelheid (m/s)

Voor een elektron geldt voor de massa de rustmassa van een elektron ( 9,109 ∙ 10−31 kg).

De omrekenfactor van Joule (J) naar elektron Volt (eV) is:
18
1 joule=6,24 ∙ 10 eV
Kinetische energie

De versnelling die optreedt bij een bepaald potentiaalverschil is te berekenen met de formule voor
de kinetische energie:

1 2
E= ∙ m ∙ v
2
Waarbij E het potentiaalverschil (J), m de massa (kg) en v de snelheid van het object (m/s)

Doordringing in anode

Het elektron zal tot een bepaalde diepte indringen (t). De kinetische energie van het elektron wordt
aangegeven met Te. Wanneer een elektron botst tegen de anode kunnen 2 dingen gebeuren:

- Ionisatie: 99% van het energieverlies. Hierbij ontstaat karakteristieke straling en komt
warmte vrij. Karakteristieke straling: Het elektron kan een elektron uit de k-schil schieten,
wanneer het elektron hiervoor voldoende energie heeft. Het elektron dat uit de k-schil is
geschoten zal vrij snel terugvallen en hierbij een Röntgenstraal uitzenden. Geeft bijdrage aan
het spectrum. Op spectrum weergaves zichtbaar als pieken, omdat de energieniveaus tussen
de verschillende schillen constant zijn. Veelgebruikte targetmaterialen zijn jodium, wolfraam
en molybdenum. Het percentage karakteristieke straling van de totale hoeveelheid
Röntgenstraling is afhankelijk van de spanning tussen anode en kathode.
o Jodium: 33 keV
o Wolfraaf 69,5 keV
o Molybdenum 20 keV
- Remstraling: Ongeveer 1% van het energieverlies. Het elektron weet door te dringen in de
kern, waarbij emissie van een Röntgenstraal ontstaat. Het elektron kan binnen de k-schil
afgebogen worden door de kern. Hierbij zal het elektron afremmen en van richting
veranderen, waarbij een Röntgenstraal vrijkomt. Afhankelijk van de afstand tot de kern zal de
afremming en afbuiging verschillen, waardoor de energie van de vrijgekomen Röntgenstraal
niet heel specifiek is. De straling heeft een breed spectrum en wordt daarom wel witte
straling genoemd.

, Een theorie die alle facetten bespreekt van de Röntgentheorie bestaat niet. Onderzoeken naar
kansberekening zijn veel uitgevoerd.

Stel dat een elektron afgaat op een dunne target, waarbij het niet vaker dan één keer botst. De
1
stopping power is dan ongeveer gelijk aan . De stopping power (S) is gelijk aan:
Te

d T e −b
S= = .
dt Te
Waarbij S de stopping power (eV/m), Te de elektronenergie (eV), t de afstand (m) en b de constante
die afhankelijk is van het targetmateriaal (eV 2/m).

Bij een dunne target geldt de volgende formule:

d2 ∙ N C
=
dk ∙ dt k T e
Waarbij N de fluentie (m2/s), k de fotonenergie (eV), C evenredig met Z/m e2 en Te de
elektronenenergie (eV).

N is gelijk aan de totale hoeveelheid remstraling onder alle hoeken. De differentiaal d 2N van
2
d ∙N
geproduceerde remstraling energierange (dk) per dikterange (dt) wordt dan gegeven door: .
dk ∙ dt
2
De C rechts in de formule is evenredig met Z /me . Hierbij is Z het atoomnummer en me de
elektronenrustmassa.

Voor een dunne target kan een formule worden opgesteld:

dN C Δt
=
dk k T e

De intensiteit wordt dan gegeven door:

I =k ∙ N
Waarbij I de intensiteit ((eV*m2)/s), k de fotonenergie (eV) en N de
fluentie (m2/s).

Randvoorwaarden zijn dan:

- Begin: T e =T 0 , t=0
- Eind: T e =0 , t=R , waarbij T0 de kinetische energie op t=0.

Hierdoor geldt:


[ ( )]
1
T2 2 t 2
R= 0 T e ( t )= T 0 1−
2b R

Waarbij R de afstand, waarvoor geldt: T e=0 (m), T0 de beginenergie van het foton (eV), t de afstand
(m) en b de constante die afhankelijk is van het targetmateriaal (eV 2/m).

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper exsamenvattingtg. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59804 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,48
  • (0)
In winkelwagen
Toegevoegd