Tentamen (uitwerkingen)
TEST BANK FOR Elementary Linear Algebra with Applications 9th Edition By Kolman, Hill (Solution manual)
8 keer bekeken
0 keer verkocht
Instelling
Harvard University
Exam (elaborations) TEST BANK FOR Elementary Linear Algebra with Applications 9th Edition By Kolman, Hill (Solution manual)
Exam (elaborations) TEST BANK FOR Elementary Linear Algebra with Applications 9th Edition By Kolman, Hill (Solution manual) Instructor’s Solutions Manual Elementary Linear...
[Meer zien]
Voorbeeld 4 van de 170 pagina's
Geupload op
30 januari 2022
Aantal pagina's
170
Geschreven in
2021/2022
Type
Tentamen (uitwerkingen)
Bevat
Onbekend
Instelling
Harvard University
Vak
TEST BANK FOR Elementary Linear Algebra with Applications 9th Edition By Kolman, Hill
Alle documenten voor dit vak (2)
€17,04
Toegevoegd
In winkelwagen
Op verlanglijstje
100% tevredenheidsgarantie
Direct beschikbaar na betaling
Zowel online als in PDF
Je zit nergens aan vast
, Instructor’s Solutions Manual
Elementary Linear
Algebra with
Applications
Ninth Edition
Bernard Kolman
Drexel University
David R. Hill
Temple University
,Contents
Preface iii
1 Linear Equations and Matrices 1
1.1 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Algebraic Properties of Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Special Types of Matrices and Partitioned Matrices . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Matrix Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Solving Linear Systems 27
2.1 Echelon Form of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Solving Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Elementary Matrices; Finding A−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Equivalent Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 LU -Factorization (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Determinants 37
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Properties of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Cofactor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Other Applications of Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Real Vector Spaces 45
4.1 Vectors in the Plane and in 3-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Span and Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Basis and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Homogeneous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 Coordinates and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
, ii CONTENTS
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Inner Product Spaces 71
5.1 Standard Inner Product on R2 and R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Cross Product in R3 (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Gram-Schmidt Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Orthogonal Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Least Squares (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6 Linear Transformations and Matrices 93
6.1 Definition and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Kernel and Range of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Matrix of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Vector Space of Matrices and Vector Space of Linear Transformations (Optional) . . . . . . . 99
6.5 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 Introduction to Homogeneous Coordinates (Optional) . . . . . . . . . . . . . . . . . . . . . . 103
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7 Eigenvalues and Eigenvectors 109
7.1 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Diagonalization and Similar Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Diagonalization of Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Supplementary Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Chapter Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8 Applications of Eigenvalues and Eigenvectors (Optional) 129
8.1 Stable Age Distribution in a Population; Markov Processes . . . . . . . . . . . . . . . . . . . 129
8.2 Spectral Decomposition and Singular Value Decomposition . . . . . . . . . . . . . . . . . . . 130
8.3 Dominant Eigenvalue and Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 130
8.4 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Real Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.7 Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.8 Quadric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10 MATLAB Exercises 137
Appendix B Complex Numbers 163
B.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.2 Complex Numbers in Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165