100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Design and Analysis of Experiments (BMS14) €4,49   In winkelwagen

Samenvatting

Summary Design and Analysis of Experiments (BMS14)

 26 keer bekeken  3 keer verkocht

Summary of all lectures and relevant literature, self-studies and practicals.

Voorbeeld 3 van de 22  pagina's

  • 3 februari 2022
  • 22
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
kimvandenbroek83
Introduction and overview of experimental design
Independent variable: the groups in an experiment are more or less comparable due to
randomization but we make a difference on one (or a few) relevant variables (e.g. age,
gender, …)
Dependent variable: we compare the group on a relevant outcome variable ( it is assumed
that this variable is continuous (with an approximate normal distribution) so we will be
comparing means
ANOVA: looking at differences between means
→ the only differences between 2 experimental groups are by chance (due to
randomization)
Good experimental design: use 2 groups (one is control) made by randomization

Benefits of good experimental design
- Isolates the treatment effect if interest from confounders
- reduces bias
- controls precision
- minimizes and quantifies random error or uncertainty
- simplifies and validates the analysis
- increases the external validity
external validity: is it possible to see the found effects of the experiment in a real-life setting

Studies with humans vs. non-humans
- Human responses to treatments and interventions tend to be more variable; the
investigator in experiments with humans cannot control as many sources of variability
through design as can be done in the lab
- Human experiments tend to need larger numbers of participants to control this
random variation
- Experiments with nonhuman subjects tend to involve fewer constraints (ethics,
consent, etc.)
- Not generally possible to recruit and observe all subjects in human studies
simultaneously, as might be done in nonhuman trials
- Some design differences, and tend to be longer studies

Randomized control trial (RCT): a special type of study mostly into the effect of a
certain drug/intervention → mostly in a regulatory context, with special rules
(ICH-E9)
Randomization tests: keep even closer to the general principle of randomization than
ANOVA
- nowadays, randomization studies are more often used (used to be very computer-
intensive) but ANOVA is still used a lot as it is easier and the outcomes are more or
less the same under general assumptions

Analysis of variance (ANOVA)
- basically a t-test
- comparing MEANS of more than two treatments/interventions
- null-hypothesis (population means amongst all groups are equal) needs to be
rejected

, - our hypothesis: (not all) population means are equal




With K=number of groups, N=number of measures (total, off all groups combined)
SS between: deviance of the treatment means around the overall mean → sum of
all estimated effects times the number of measures
SS within: error variance based on all the observation deviations from their appropriate
treatment means
SS total: total variance based on all the observation deviations from the grand mean
estimated effect:




F ratio: around 1 when there is no effect and bigger than 1 when there is an effect
→ between variance estimate needs to be bigger than within variance estimate
p-value: the probability of observing an F value greater than or equal to the one
obtained GIVEN that the null hypothesis is true → the smaller the p-value the
greater the support for rejecting the null hypothsis (and concluding that not all
population means are equal)

Reporting of the results
- try to avoid terms like ‘statistically significant’
- Estimate of effect: point estimate with direction and confidence interval (where
relevant) For ANOVAs when you have more than two groups but you could report
group means and use a method of multiple comparisons that produces confidence
intervals for these pairwise comparisons.
- Supporting statistics: test statistic (e.g. F-statistic for ANOVA), degrees of freedom
(e.g. between group df and within group df for ANOVA), and the P-value. The exact
P-value should be reported, unless the evidence is strong (i.e. P = 0.03 is good and
P < 0.001 is also acceptable)

, Three assumptions of ANOVA
- independance of errors: you assume that the outcomes of different people
in a group do not depend on each other → can be prevented a bit by
randomization
- equal error variance across treatment/groups (also known as homogeneity
of variance assumption) → the red line should be around zero except for
when there is a trechter vorm




- normality of errors → groups should be equally large to prevent this




- QQ plot is used to see if all errors combined form a normal distribution

ANCOVA
- extension of ANOVA to incorporate a continuous covariate (eg baseline)
- another way of reducing the noise term by accounting for individual differences that
are present
- use linear regression models to support the interpretation of the treatment effect

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper kimvandenbroek83. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75632 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,49  3x  verkocht
  • (0)
  Kopen