100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary of Network Society (0HM220) €4,99   In winkelwagen

Samenvatting

Summary of Network Society (0HM220)

 8 keer bekeken  2 keer verkocht

Clear and concise summary of the course 0HM220 including all lectures

Voorbeeld 2 van de 13  pagina's

  • 14 maart 2022
  • 13
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
julietwa
Summary Network Society (0HM220)
Lecture 1 Introduction SNA
Network concepts:

- Graph theory: a graph is a set of vertices/nodes/actors and a set of lines/links/edges
between pairs of vertices
o Vertices/node: smallest unit in a graph, e.g. v={1,2,3,4}
o Edges/link, connect two vertices, e.g. E={{1,2}, {1,3}, {2,3}, {3,4}}
o Loop: line that connects a vertex to itself, e.g. email send to yourself
o Directed relationship/arc: X likes Y, X influences Y, in a digraph/directed graph
there are arrows directing at vertices
o Undirected there is no direction of the links
o Simple network: multiple links between vertices or loops are not possible
o Adjacency matrix used to indicate whether persons are connected or not
o Weighted network: links have a weight e.g. number of times persons have
communicated
- Import network data
o Import adjacency data csv file in for of a matrixwe use this, make sure to indicate
the right network, directed/indirected, and weighted/unweighted
o Edgelist, read in list of edges from csv
o Nodelist, for every node, at which it is pointing
- Degree in nondirected graph: the degree of a vertex represents the number of links it has to
other vertices, gives the connectedness
- Degree in a directed graph: indegree (how many are pointing at you), outdegree (number of
points you are pointing at)
- Degree distribution: distribution of all degrees, provides the probability
that a randomly selected vertex in a network has degree k
o For weighted network we use vertex strength: summing up the
weights of edges incident to a given vertex. Again vertex
strength distribution

Centrality: more central means more important/powerful/influential

- Degree centrality: number of connections a node has, and hence the potential access to
resources
- Eigenvector centrality: not only number of connections are important, but how connected
the connections are is taken into account
- Betweenness centrality: how often a certain person is in between the path of others

Social distance: about pairs of actors and connections they have

- Path length: number of links a path contains
- Shortest path/geodesic distance: shortest path to go from one node to another, there can
be multiple geodesic distances (with the same length)
- The longest geodesic distance in network is the diameter
- For a node, the largest geodesic distance is the eccentricity, how far an actor is from the
furthest other

Clustering of social networks:

, - The larger the human network, the lower the density (actual/potential links)
- Component: a subset of nodes in a network, minimum of nodes is 2, every node can
(indirectly) reach each other in a component
- Vertex connectivity: how many nodes do you need to remove to separate the remaining
nodes into two or more components, shows the cohesion of a network. If connectivity>1
there are no articulation points, if it is 1 there are. Articulation points or cut points are the
points that should be removed to separate itis about vulnerability of networks
- Clique: complete subgraphs, everyone is connected to everyone, are very rare
- Community: locally dense connected subgraphs, but not everyone is connected to everyone.
o Modularity: range from -1/2 to +1 (perfect modularity), can be used to find
communities/divisions in a large network
- Density not good to define clustering/cohesion as it depends on the size. We use clustering
coefficient/transitivity index, transitive triad: if a is connected to B, and A is connected to C,
B should also be connected to C. Transitivity measures the probability that the adjacent
vertices of a vertex are connected. The total transitivity is how often there is transitivity, e.g.
3 out of 5 are connected =0.6

Small worlds: found in many real-world phenomena, properties:

1. Networks are very clustered, they are connected via long-distance/weak ties
2. The average path length is rather short



Lecture 2 Social network theories
Three questions about the arguments of classical social network theories:

- What effects do networks have?
- Which network characteristic matter?
- Why do they matter/what is the effect of the characteristics?

Network: a set of ties (relations) amongst a set of actors

Two network characteristics that matter, innovation success benefits from:

- Macro point of view (whole network): network closure facilitates the emergence of trust
and thereby successful collaboration between actors
- Micro point of view (single actor): network diversity important since it provides access to
brokerage benefits, diverse resources, innovative ideas
- There is not one best network configuration, different networks are beneficial in different
situations
o Close-kit networks optimize benefits from collaboration
o Diverse networks optimize competitive benefits

Basic social network arguments/theories:

1. The strength of weak ties (Granovetter):

- We can determine the strength of ties based on the (1) frequency of interaction, (2)
emotional closeness, (3) duration of contact
- More than half found job through personal contacts, many of these contacts were weak ties.
Granovetter’s conjecture: strong ties are usually more willing to help out, but are more likely

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper julietwa. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64438 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,99  2x  verkocht
  • (0)
  Kopen