100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary of the Lectures of Statistics 2 - 2021/2022 + Additional Summary of the homework module €5,49
In winkelwagen

College aantekeningen

Summary of the Lectures of Statistics 2 - 2021/2022 + Additional Summary of the homework module

 2 keer verkocht

A complete summary with notes of the Statistics 2 lectures from 2021/2022 given by Peter Klaren. There is an additional summary of the online e-learning module "Systematic Reviews of Animal Studies" that was mandatory homework for one of the guest lectures.

Voorbeeld 4 van de 101  pagina's

  • 21 maart 2022
  • 101
  • 2021/2022
  • College aantekeningen
  • Peter klaren
  • Alle colleges
Alle documenten voor dit vak (1)
avatar-seller
pattylamker
Lectures




STATISTICS 2
Lamker, Patricia
NWI- BB020C
Radboud University, 2022

,Table of Content
1. Lecture - Introduction ......................................................................................................................... 4
1.1 Example I ....................................................................................................................................... 5
1.1.1 Pregnancy outcomes in a study group exposed to cetirizine and a control group ............... 5
1.1.2 How do you look at the data? ................................................................................................ 5
1.1.3 How would you analyse the data? ......................................................................................... 5
1.2 Recapitulation: .............................................................................................................................. 6
1.2.1 Variables: Independent vs. dependent, qualitative vs. quantitative and choice of
statistical tests ................................................................................................................................ 6
1.2.2 Which tests? Analysing differences between sample with one independent variable. ....... 6
1.3 Back to the Example I .................................................................................................................... 6
1.3.1 Analysis of the cetirizine data using a  2 -test of Independence in JASP 0.16 ..................... 6
1.3.2 Analysis and interpretation of the cetirizine data ................................................................. 7
1.4 Example II ...................................................................................................................................... 8
1.4.1 Analysis of the amygdala data using linear regression in JASP 0.16 ...................................... 8
1.5 Why all this stuff about different choices in statistical analysis? ................................................. 9
1.6 Additional Notes ......................................................................................................................... 10
2. Lecture .............................................................................................................................................. 11
2.1 Sex/ Gender Bias ......................................................................................................................... 11
2.2 Factorial Experimental Designs ................................................................................................... 11
2.2.1 Looking for interactions between factors ............................................................................ 11
2.2.2. Analysing factorial experimental designs using contrasts .................................................. 18
2.3 Bottom lines ................................................................................................................................ 21
3. Lecture – Multiple Linear Regression (Spurious relationships, model selection) ............................. 22
3.1 Example “How to win a Nobel Prize” .......................................................................................... 22
3.1.1 Flavonols .............................................................................................................................. 22
3.1.2 Eat chocolate! ...................................................................................................................... 22
...................................................................................................................................................... 22
...................................................................................................................................................... 22
3.1.3 Eat chocolate? ...................................................................................................................... 22
3.1.4 Some context: Nobel laureates by country. ........................................................................ 22
3.1.5 A matter of national development? .................................................................................... 23
3.2 Recap Statistics 1 ........................................................................................................................ 23
3.2.1 A straight line: ...................................................................................................................... 23
3.2.2 Overview of linear regression calculations on a calibration curve: ..................................... 23



1

, 3.2.3 In multiple regression we will try to fit a best fitting hyperplane in more than two
dimensions (1DV, ≥ 2 IVs)............................................................................................................. 24
3.3 Why multiple linear regression? ................................................................................................. 24
3.4 Watch out for: ............................................................................................................................. 24
3.4.1 Simplification by dichotomization ....................................................................................... 24
3.4.2 Model abuse and spurious correlations & correlation =/ causation ................................... 27
3.4.3 The Simpson Paradox – an extreme example of a confounding variable............................ 32
3.5 Bottom lines: ............................................................................................................................... 34
4. Lecture – Power Analysis and Sample Size Calculation .................................................................... 35
4.1 Power Analysis ............................................................................................................................ 35
4.1.1 Biomedical research’s replication crisis ............................................................................... 35
4.2 Sample Size (n) determination .................................................................................................... 37
4.2.1 Example ................................................................................................................................ 37
4.2.2 The power of a statistical test indicates the sensitivity of a test to detect an effect when
there is one. .................................................................................................................................. 39
4.2.3 B – E – A – N – S (more on this later) ................................................................................... 39
4.2.4 How sample size, variability, and significance level affect power of a statistical analysis. 40
4.2.5 How many times will your test give a significant outcome when there is no difference
between groups? .......................................................................................................................... 40
4.2.6 Example – Biological Variation ............................................................................................. 41
4.2 ..................................................................................................................................................... 44
4.2.1 B – E – A – N – S.................................................................................................................... 44
4.2.2 Randomization and Stratification ........................................................................................ 48
4.3 Sample size calculations and power analyses using G*Power ................................................... 48
4.3.1 The bottom line when it comes to sample size: .................................................................. 49
4.3.2 Size does matter! ................................................................................................................. 49
4.3.3 Rule of thumb assuming a normal distribution ................................................................... 49
4.3.4 Formal calculation using the t-distribution .......................................................................... 50
4.3.5 Six approaches to justify sample sizes ................................................................................. 50
4.3.6 Six possible ways to think about effect size ......................................................................... 51
1. Guest Lecture – Dokter Media .......................................................................................................... 52
2. Guest Lecture – Syrcle....................................................................................................................... 54
2.1 Introduction to systematic reviews on animal studies ............................................................... 54
2.1.1 Steps of a systematic review ................................................................................................ 54
2.1.2 Benefits of preclinical SRs .................................................................................................... 54
2.1.3 Study Quality ........................................................................................................................ 55


2

, 2.1.4 Forest Plot ............................................................................................................................ 55
2.1.5 Subgroup Analysis ................................................................................................................ 56
2.1.6 Tools per phase .................................................................................................................... 56
2.2 Practical Data Extraction ............................................................................................................. 57
2.2.1 Types of outcome measures ................................................................................................ 57
2.2.2 Assignment – extracting outcome data ............................................................................... 57
2.2.3 Take Home Message ............................................................................................................ 59
2.3 Data-analysis and Meta-analysis................................................................................................. 60
2.3.1 Data-analysis or meta-analysis ............................................................................................ 60
2.3.2 Meta-analysis ........................................................................................................................... 60
2.3.3 From study data to forest plot ............................................................................................. 60
2.3.4 Choosing your effect size measure. continuous data .......................................................... 60
2.3.5 Continuous Data: MD vs. SD ................................................................................................ 61
2.3.6 Combining data – fixed vs. random effects ......................................................................... 61
2.3.7 Calculating the summary effect size .................................................................................... 62
2.3.8 Heterogeneity ...................................................................................................................... 62
2.3.9 Take Home Message ............................................................................................................ 63
2.4 Meta-analysis .............................................................................................................................. 64
2.4.1 Assessing publication bias: funnel plot ................................................................................ 64
5. Lecture – Bayesian inference ............................................................................................................ 66
5.1 Differences between classical frequentists and Bayesian statistical reasoning ......................... 66
5.1.2 Analysis of the cetirizine data. ............................................................................................. 66
5.1.2 Thomas Bayes (1701? – 1761) ............................................................................................. 68
5.2 Example ....................................................................................................................................... 68
5.2.1 Bayesian logic in interpreting laboratory tests. ................................................................... 68
5.2.2 Probability: sets and Venn diagrams. .................................................................................. 71
5.2.3 What is the probability that patient A carries the disease? Bayes’ theorem. .................... 72
5.3 p (A|B) ≠ p (B|A) ......................................................................................................................... 73
5.3.1 An example data set: Data from students in a statistics course, 2010-2011 ...................... 73
5.4 Bottom Lines ............................................................................................................................... 79


Additional: Summary online e-learning module Systematic Reviews of Animal Studies 80




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper pattylamker. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd