100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Aantekeningen alle lessen Introduction To Research in Marketing 2022 €5,49   In winkelwagen

College aantekeningen

Aantekeningen alle lessen Introduction To Research in Marketing 2022

1 beoordeling
 71 keer bekeken  4 keer verkocht

Alle aantekeningen van de lessen van IRM + extra notities!

Voorbeeld 4 van de 55  pagina's

  • 25 maart 2022
  • 55
  • 2022/2023
  • College aantekeningen
  • Els gijsbrechts
  • Alle colleges
Alle documenten voor dit vak (21)

1  beoordeling

review-writer-avatar

Door: Mathias • 1 jaar geleden

avatar-seller
JoelleSmit
Introduction lesson
1.1. Defining multivariate analysis
It refers to all statistical methods that simultaneously analyze multiple measurements on each
individual or object under investigation.

➔ Almost every real life marketing problem requires statistical analysis of several variables: you
need them in your toolkit!
➔ Crucial for Master Thesis:
o Translate marketing problem
o Collect data
o Analyze using R

1.2. Some basic concepts
1.2.1. Measurement Scales
- Nonmetric: nominal, ordinal
- Metric: interval, ratio

Nominal

- unique definition/identification classification
- (brand name, gender, favorite ice crem)
- %, mode, chi square tests

Ordinal

- Indicate ‘order’, sequence
- Preference ranking (gold, silver, bronze)
- Percentiles, median, rank correlation, mode, %, chi square tests

Interval

- No absolute 0 point
- 7-point likert scale
- Arithmetic average, range, standard deviation, product-moment correlation + previous
methods.

Ratio

- Absolute 0 point
- Age, cost, number of customers
- Geometric average, coefficient of variation + all previous methods

1.2.2. Errors: reliability and validity
- Reliability = is the measure consistent? = the degree to which multiple measurements give
the same results → test-retest
- Validity = does the measure capture the concept it is supposed to measure? = the degree to
which the scores of a measure represent the variable they are intended to

,1.2.3. Statistical Significance and Power

Hypothesis testing
= testing whether something is (different) from
0. For example “does advertising affect sales?”

You decide that there is a difference, but there is
none in reality → how can we make sure that
that problem becomes smaller? That the risk
that we conclude there is a difference, when in
reality there is not? → You want to set a cutoff
(you need your measure to be higher than your
cutoff)

- You conclude that something is different, but in reality it is not = type 1 error (false positive)
- You conclude that there is no difference, but in reality there is = type 2 error
- We are trying to reduce both types of mistakes, the way we are going to do that:
o Allow type 1 error to 5% (alpha 0.05)
o Live with the fact that we can make a type 2 error

Power

Power depends on:

- Alpha (a) → (+) = if you are willing to accept a higher type 1 error, the power will be higher
- Effect size → (+) = if a difference is bigger in reality, you have a higher chance of finding that
difference in your test
- Sample size (n) → (+) = if you look at bigger sample sizes, your test will have a higher power

Implications:

- Anticipate consequences of alpha, effect and n
- Assess/incorporate power when interpreting results


1.3. Types of Multivariate Methods
Dependence Techniques

- 1 or more variables can be identified as dependent variables and the remaining as
independent variables
- Choice of dependence technique depends on the number of dependent variables involved in
analysis

Interdependence Techniques

- Whole set of interdependent relationships is examined
- Further classified as having focus on variable or objects

,Highlights of Chapter 2 – Self-study!
2.1. Conduct preliminary analysis: graphical inspection and simple analyses

Why?

- Get a feel for the data
- Suggest possible problems (and remedies) in next step

How?

- Univariate profiling
- Bivariate analysis

2.2. Detect outliers




How can we detect outliers?

- Univariate
- Bivariate
- Multivariate




2.3. Examining missing data

Missing data leads to:

- Reduced sample size (respondents can not be included in the sample)
- Possibly biased outcomes if missing data process not random

➔ 4 step approach for identification and remedying
1. Determine type of missing data → ignorable or non-ignorable missings?
2. Determine extent (%) of missing data → by variable, case, overall
3. Diagnose randomness of missing data → systematic, missing at random, missing completely
at random
4. Deal with the missing data problem → Remove Cases or variables with missing values, use
imputation (replace missing observations by an average)

, Step 3: Diagnose the randomness of missing data




Lecture 2: ANOVA
Step 1: Defining Objectives
Test whether the treatments (categorical variables) lead to different levels for a (set of) metric
outcome variables, for example:

- Does online ad design, in particular: position of picture and logo, affect the click-through rate
(DV)?
- How does visit frequency (1 or 2 a year) and use of samples (yes/no) affect physician
prescriptions (DV)?
- How does promo activity affect store sales and traffic (DV)?
➔ De DV is metric (interval/ratio scale) and the drivers for the input variables are non-metric.
They have to take on a discreet value (nominal/ordinal)

Overview of approaches




➔ Example: analysis of Store Sales and Traffic → How does promo activity affect store sales
and traffic? → 2 drivers: coupon activity (1 = 20euro/visit or 2= none) and promotion
intensity (1= high, 2=medium, 3=low)
➔ You see a picture of a data set, each row is a store (30 in total) and the different columns are
the different variables. Rating column = the wealth in region 1 to 10.

When we look at this set there are different questions:

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper JoelleSmit. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 57114 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  4x  verkocht
  • (1)
  Kopen