100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Linear Algebra for EOR 21/22 (Rijksuniversiteit Groningen, EBP037A05)

Beoordeling
5,0
(1)
Verkocht
5
Pagina's
23
Geüpload op
25-03-2022
Geschreven in
2021/2022

This document is a summary of all lecture slides provided by Stefan Pichler during the 2021/2022 course Linear Algebra. The course is part of the first year of the Econometrics and Operations Research program at the Rijksuniversiteit Groningen.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
25 maart 2022
Aantal pagina's
23
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Linear Algebra Summary
Econometrics and Operations Research 2021/2022

,Table of Contents
Week 1..................................................................................................................................................... 3
Eigenvectors and Eigenvalues ............................................................................................................. 3
Diagonalizable Matrices ...................................................................................................................... 3
Difference Equations ........................................................................................................................... 3
Nondiagonalizable Matrices ................................................................................................................ 4
Jordan Normal Forms .......................................................................................................................... 4
Complex Eigenvalues and Eigenvectors .............................................................................................. 5
Week 2..................................................................................................................................................... 6
Markov Processes................................................................................................................................ 6
Symmetric Matrices ............................................................................................................................ 6
Quadratic Forms .................................................................................................................................. 7
Differential Equations.......................................................................................................................... 7
Solutions of First Order ODEs .............................................................................................................. 8
Solutions of Inhomogeneous Linear ODEs .......................................................................................... 8
Week 3..................................................................................................................................................... 9
Second Order Linear ODEs .................................................................................................................. 9
Direction Fields .................................................................................................................................. 10
Phase Portraits .................................................................................................................................. 10
Systems of Differential Equations ..................................................................................................... 11
Linear Systems of ODEs ..................................................................................................................... 12
Week 4................................................................................................................................................... 13
Stability Properties of Equilibrium Solutions..................................................................................... 13
Phase Portraits .................................................................................................................................. 14
Determinants and their Properties ................................................................................................... 15
The Inverse of a Matrix...................................................................................................................... 16
Cramer’s Rule .................................................................................................................................... 17
Week 5................................................................................................................................................... 18
Linear Spaces and Linear Subspaces ................................................................................................. 18
Bases and Dimension of a Linear Space ............................................................................................ 18
Row Spaces ........................................................................................................................................ 19
Column Spaces .................................................................................................................................. 19
Solving Systems of Linear Equations ................................................................................................. 20
Week 6................................................................................................................................................... 21
Null Spaces ........................................................................................................................................ 21
Affine Subspaces ............................................................................................................................... 22
Linear Basis Transformations ............................................................................................................ 22




2

, Week 1
Eigenvectors and Eigenvalues
- Canonical basis vectors in ℝ𝑛 :
1 0 0
0 1 0
- 𝑒1 = ( ) , 𝑒2 = ( ),…, 𝑒1 = ( ).
⋮ ⋮ ⋮
0 0 1
- Identity matrix in 𝑅 𝑛×𝑛 :
1 0 ⋯ 0
0 1 ⋯ 0
- 𝐼𝑛 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 1
- An eigenvalue of a square matrix 𝐴 is a number 𝜆 ∈ ℂ such that the matrix 𝐴 − 𝜆𝐼𝑛 is
singular.
- The number 𝜆 ∈ ℂ is an eigenvalue of 𝐴 iff det(𝐴 − 𝜆𝐼) = 0. This is the characteristic
equation of matrix 𝐴.
- The trace of a square matrix 𝐴 is the sum of its diagonal entries.
▪ 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 = trace(𝐴).
▪ 𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑛 = det(𝐴).
- A vector 𝑣 ≠ 0 such that (𝐴 − 𝜆𝐼)𝑣 = 0 for some eigenvalue 𝜆 of 𝐴 is called an eigenvector
of 𝐴 corresponding to 𝜆.
- Note that: (𝐴 − 𝜆𝐼)𝑣 = 0 ⇔ 𝐴𝑣 = 𝜆𝑣.

Diagonalizable Matrices
- Let 𝐴 be a square matrix and let 𝜆1 , … , 𝜆2 , … , 𝜆𝑛 be its eigenvalues and 𝑣1 , 𝑣2 , … , 𝑣𝑛
corresponding eigenvectors, with 𝑃 ≔ [𝑣1 … 𝑣𝑛 ]. Then:
- If P is invertible, then:
𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
▪ 𝑃−1 𝐴𝑃 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 𝜆𝑛
−1
- If 𝑄 𝐴𝑄 is a diagonal matrix 𝐷, then the columns of 𝑄 are eigenvectors of 𝐴 and the
diagonal entries of 𝐷 are eigenvalues of 𝐴.

Difference Equations
- One can use difference equations to model dynamical problems.
- If 𝐴 is a square matrix, then 𝑧𝑡+1 = 𝐴𝑧𝑡 is a system of linear difference equations (LDE).
- If you know the initial value 𝑧0 then you can iteratively calculate 𝑧1 , 𝑧2 , etc.
- In general: 𝑧𝑡 = 𝐴𝑡 𝑧0 , 𝑡 ≥ 0.
- A solution is of an LDE is a sequence of vectors {𝑧𝑡 }∞
𝑡=𝑡0 that ‘fits’ the LDE.
- The general solution of an LDE is the set containing all solutions of the LDE.
- The sequence {0, 0, 0, … } is a solution of an LDE for every 𝐴 and is called the null solution of
the LDE.




3
€5,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
bartkoopmans
5,0
(1)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
3 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
bartkoopmans Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
3 jaar
Aantal volgers
5
Documenten
3
Laatst verkocht
3 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen