100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Linear Algebra for EOR 21/22 (Rijksuniversiteit Groningen, EBP037A05) €4,98
In winkelwagen

Samenvatting

Summary Linear Algebra for EOR 21/22 (Rijksuniversiteit Groningen, EBP037A05)

1 beoordeling
 207 keer bekeken  5 keer verkocht

This document is a summary of all lecture slides provided by Stefan Pichler during the 2021/2022 course Linear Algebra. The course is part of the first year of the Econometrics and Operations Research program at the Rijksuniversiteit Groningen.

Voorbeeld 3 van de 23  pagina's

  • 25 maart 2022
  • 23
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (3)

1  beoordeling

review-writer-avatar

Door: npostma2003 • 2 jaar geleden

avatar-seller
bartkoopmans
Linear Algebra Summary
Econometrics and Operations Research 2021/2022

,Table of Contents
Week 1..................................................................................................................................................... 3
Eigenvectors and Eigenvalues ............................................................................................................. 3
Diagonalizable Matrices ...................................................................................................................... 3
Difference Equations ........................................................................................................................... 3
Nondiagonalizable Matrices ................................................................................................................ 4
Jordan Normal Forms .......................................................................................................................... 4
Complex Eigenvalues and Eigenvectors .............................................................................................. 5
Week 2..................................................................................................................................................... 6
Markov Processes................................................................................................................................ 6
Symmetric Matrices ............................................................................................................................ 6
Quadratic Forms .................................................................................................................................. 7
Differential Equations.......................................................................................................................... 7
Solutions of First Order ODEs .............................................................................................................. 8
Solutions of Inhomogeneous Linear ODEs .......................................................................................... 8
Week 3..................................................................................................................................................... 9
Second Order Linear ODEs .................................................................................................................. 9
Direction Fields .................................................................................................................................. 10
Phase Portraits .................................................................................................................................. 10
Systems of Differential Equations ..................................................................................................... 11
Linear Systems of ODEs ..................................................................................................................... 12
Week 4................................................................................................................................................... 13
Stability Properties of Equilibrium Solutions..................................................................................... 13
Phase Portraits .................................................................................................................................. 14
Determinants and their Properties ................................................................................................... 15
The Inverse of a Matrix...................................................................................................................... 16
Cramer’s Rule .................................................................................................................................... 17
Week 5................................................................................................................................................... 18
Linear Spaces and Linear Subspaces ................................................................................................. 18
Bases and Dimension of a Linear Space ............................................................................................ 18
Row Spaces ........................................................................................................................................ 19
Column Spaces .................................................................................................................................. 19
Solving Systems of Linear Equations ................................................................................................. 20
Week 6................................................................................................................................................... 21
Null Spaces ........................................................................................................................................ 21
Affine Subspaces ............................................................................................................................... 22
Linear Basis Transformations ............................................................................................................ 22




2

, Week 1
Eigenvectors and Eigenvalues
- Canonical basis vectors in ℝ𝑛 :
1 0 0
0 1 0
- 𝑒1 = ( ) , 𝑒2 = ( ),…, 𝑒1 = ( ).
⋮ ⋮ ⋮
0 0 1
- Identity matrix in 𝑅 𝑛×𝑛 :
1 0 ⋯ 0
0 1 ⋯ 0
- 𝐼𝑛 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 1
- An eigenvalue of a square matrix 𝐴 is a number 𝜆 ∈ ℂ such that the matrix 𝐴 − 𝜆𝐼𝑛 is
singular.
- The number 𝜆 ∈ ℂ is an eigenvalue of 𝐴 iff det(𝐴 − 𝜆𝐼) = 0. This is the characteristic
equation of matrix 𝐴.
- The trace of a square matrix 𝐴 is the sum of its diagonal entries.
▪ 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑛 = trace(𝐴).
▪ 𝜆1 ∗ 𝜆2 ∗ ⋯ ∗ 𝜆𝑛 = det(𝐴).
- A vector 𝑣 ≠ 0 such that (𝐴 − 𝜆𝐼)𝑣 = 0 for some eigenvalue 𝜆 of 𝐴 is called an eigenvector
of 𝐴 corresponding to 𝜆.
- Note that: (𝐴 − 𝜆𝐼)𝑣 = 0 ⇔ 𝐴𝑣 = 𝜆𝑣.

Diagonalizable Matrices
- Let 𝐴 be a square matrix and let 𝜆1 , … , 𝜆2 , … , 𝜆𝑛 be its eigenvalues and 𝑣1 , 𝑣2 , … , 𝑣𝑛
corresponding eigenvectors, with 𝑃 ≔ [𝑣1 … 𝑣𝑛 ]. Then:
- If P is invertible, then:
𝜆1 0 ⋯ 0
0 𝜆2 ⋯ 0
▪ 𝑃−1 𝐴𝑃 = ( ).
0 0 ⋱ ⋮
0 0 ⋮ 𝜆𝑛
−1
- If 𝑄 𝐴𝑄 is a diagonal matrix 𝐷, then the columns of 𝑄 are eigenvectors of 𝐴 and the
diagonal entries of 𝐷 are eigenvalues of 𝐴.

Difference Equations
- One can use difference equations to model dynamical problems.
- If 𝐴 is a square matrix, then 𝑧𝑡+1 = 𝐴𝑧𝑡 is a system of linear difference equations (LDE).
- If you know the initial value 𝑧0 then you can iteratively calculate 𝑧1 , 𝑧2 , etc.
- In general: 𝑧𝑡 = 𝐴𝑡 𝑧0 , 𝑡 ≥ 0.
- A solution is of an LDE is a sequence of vectors {𝑧𝑡 }∞
𝑡=𝑡0 that ‘fits’ the LDE.
- The general solution of an LDE is the set containing all solutions of the LDE.
- The sequence {0, 0, 0, … } is a solution of an LDE for every 𝐴 and is called the null solution of
the LDE.




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper bartkoopmans. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,98. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,98  5x  verkocht
  • (1)
In winkelwagen
Toegevoegd