100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Data Structures and Algorithms Summary () €6,99
In winkelwagen

Samenvatting

Data Structures and Algorithms Summary ()

1 beoordeling
 6 keer verkocht

Summary of a combination of lecture notes and parts of the book "Introduction to Algorithms" by TH Cormen, CE Leiserson, RL Rivest, and C Stein. Lectures were given by prof. F Van Raamsdonk in schoolyear .

Voorbeeld 2 van de 12  pagina's

  • Nee
  • Hoofdstuk 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15 & 16
  • 1 april 2022
  • 12
  • 2021/2022
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alles voor dit studieboek (2)
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: teodorioancalin • 2 jaar geleden

avatar-seller
syntryx
X_400614 Data Structures and Algorithms
Index

Chapter 1 - The Role of Algorithms in Computing...........................................................................................1
Chapter 2 - Getting Started ...............................................................................................................................1
Chapter 3 - Growth of Functions ......................................................................................................................2
Chapter 6 - Heapsort .........................................................................................................................................2
Chapter 7 - Quicksort ........................................................................................................................................3
Chapter 8 - Sorting in Linear Time ...................................................................................................................3
Chapter 10 - Elementary Data Structures .........................................................................................................5
Chapter 11 - Hash Tables ..................................................................................................................................6
Chapter 12 - Binary Search Trees .....................................................................................................................8
Chapter 13 - AVL Trees .....................................................................................................................................9
Chapter 15 - Dynamic Programming ..............................................................................................................10
Chapter 16 - Greedy Algorithms .....................................................................................................................11
Chapter x - Remaining Examples & Dijkstra’s Algorithm .............................................................................11

Chapter 1 - The Role of Algorithms in Computing

• An algorithm is a computational procedure that takes input and produces an output. It solves a
computational problem and is correct if, for every input instance it produces the right output.
• Not every problem solved by algorithms has an easily identified set of candidate solutions.
• A data structure is a way to store and organize data in order to facilitate access and modification.
• It is a given to choose an algorithm wisely, such that it will be time and space efficient.

Chapter 2 - Getting Started

➤2.1 Insertion Sort
• Insertion sort is a sorting algorithm that sorts by inserting an unsorted
element to the already sorted array. It is an efficient algorithm for
sorting a small number of elements.
• It sorts the input in place, it rearranges the elements, keys, within the
array, though it makes use of a subarray to store the still unsorted elements in.
• Insertion sort runs on Θ(n2) in average and worst case scenarios and has a best case scenario in Θ(n).

➤2.2 Analyzing Algorithms
• The running time of the algorithm grows with the input size. The running time is the amount of steps
executed to get an output.
• Assuming each line takes the same time, each execution of the ith line takes time ci, where ci is a
constant cost. A statement that takes ci steps to execute an executes n times will contribute cin to the total
running time.
• The worst case running time is always taken into consideration because it guarantees that the algorithm
will never take any longer; plus, for some algorithms they actually occur fairly often.
• For the rate of growth of the running time, only the leading term is taken. I.e. 2 n2 will be just n2.

➤2.3 Designing Algorithms
2.3.1 The divide-and-conquer approach
• Many algorithms are recursive in structure. It follows a divide-and-
conquer approach where the problem is divided in smaller subproblems
that will be solved recursively. Then the results are combined.
• Merge sort uses such approach. The elements are divided into two
subparts, then the subparts are sorted recursively using merge sort.
• A key operation is the merging of two sorted sequences by calling
MERGE(A, p, q, r) where p ≤ q < r. This takes Θ(n) time.
• The sentinel card(∞) is there to say one
subsequence has no more elements, therefore, the
elements in the other subsequence will always be
bigger.



, 2.3.2 Analyzing divide-and-conquer algorithms
• When an algorithm contains a recursive call to itself, its running time is often described by a recursive
equation, a recurrence. It describes the overall running time on a problem of size n in terms of the
running time on smaller inputs than n.
• The running time on a problem of size n is T(n). If the size is small enough such that n ≤ c, then it takes
constant time which is Θ(1).
• Suppose division yields a subproblems that are 1/b the size of the original problem. It will take aT(n/b)
to solve all the subproblems. Next, the time it takes to divide, D(n), and the time to combine, C(n), also
need to be added to get the recurrence.

{aT (n /b) + D(n) + C(n)
Θ(1) if n ≤ c,
• T (n) =
otherwise
• While looking at merge sort and n > 1, the running time is broken down as follows:
- Dividing is done in constant time, D(n) = Θ(1).
- Recursively solving 2 subproblems each of size n/2 will add 2T(n/2) to the running time.
- Merging the subproblems takes Θ(n) as stated before, so C(n) = Θ(n)
• Which makes the worst case running time for merge sort: 2T(n/2) + Θ(n) if n > 1. If n = 1, Θ(1).
• For merge sort, T(n) = Θ(n lg n), as the recurrence if n > 1 can be rewritten as T(n) = 2T(n/2) + cn
where constant c represents the time required to solve problems of size 1 as well as the time per array
element of the divide and combine steps.

Chapter 3 - Growth of Functions

➤3.1 Asymptotic Notation
• The asymptotic efficiency of algorithms is studied when the size of the input is large enough to make
only the order of growth of the running time relevant.
• Asymptotic notations are well suited to characterizing running times no matter what the input is.
• The Θ-notation is asymptotic tight bound (=), with tight bound meaning the running time is nailed
within a constant factor above and below.
• The O-notation is asymptotic upper bound (≤), this is used when a running time is only bound from
above. So in this case the ‘big-o’ of a running time can actually be much larger than in reality.
• The Ω-notation is asymptotic lower bound (≥), it says that an algorithm takes at least a certain amount
of time. It bounds the growth of the running time from below.
• Using asymptotic notation in equations can help eliminate inessential detail and clutter.
• The right-hand side of an equation provides less detail than the left-hand side.
• The o-notation is asymptotic upper bound not tight (<), e.g. 2n = o(n2) but 2n2 ≠ o(n2).
• The ω-notation is asymptotic lower bound not tight (>), e.g. n2/2 = ω(n) but n2/2 ≠ ω(n2).

Chapter 6 - Heapsort

➤6.1 Heaps
• The (binary) heap data structure is an array object that can be viewed as a nearly complete binary tree.
• Each node of the tree corresponds to an element of the array.
• An array A that represents a heap has two attributes, A.length which gives the number of elements of the
array and A.heap-size which represents how many elements in the heap are stored in A.
• In a max-heap, which is used for heapsort, the max-heap property is that A[parent(i)] ≥ A[i]. So the
largest element will be stored at the root. In a min-heap it is the opposite.
• The height of a node is the maximal length of a path to a leaf(a node without children). The height of the
tree is the height of the root. Its height is Θ(lg n).

➤6.2 Maintaining The Heap Property and Building A Max-Heap
• Maintaining the heap property is done with procedure MAX-HEAPIFY,
which lets the value at A[i] float down so that the largest element will
eventually become the root.
• By calling BUILD-MAX-HEAP, MAX-HEAPIFY is called
on all nodes such that the array now will be in order.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper syntryx. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  6x  verkocht
  • (1)
In winkelwagen
Toegevoegd