100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Behavioral Research Methods 2: Dealing With Data (0HV50) €4,49   In winkelwagen

Samenvatting

Samenvatting Behavioral Research Methods 2: Dealing With Data (0HV50)

 23 keer bekeken  0 keer verkocht

A summary of behavioral research methods 2 with some examples of how to use Stata with the different data. All the stuff you need to know for the exam is in this summary.

Voorbeeld 3 van de 28  pagina's

  • 14 april 2022
  • 28
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (3)
avatar-seller
maritvanderlit
Behavioral research methods Lectures

Lecture 1

Kinds of variables:
- Categorical / nominal
o Two or more categories without intrinsic ordering (kind of movie)
o When only two categories, also called binary variable or dummy variable
(gender)
- Ordinal
o Two or more categories with intrinsic ordering (5 point rating)
- Interval / continuous
o Ordinal + intervals between values are evenly spaces (age, income)

Y=
- Dependent variable
- Response variable
- Y- variable
- Explanandum
- Target variable

X=
- Independent variable
- X – variable
- Predictor variable
- Explanans

Experiment : researcher determines X  Manipulate
Survey : researcher measures X  measure

Dealing with data: general analysis setup
1. Check your data
a. To get acquainted with it
b. For outliers and coding errors
2. Determine the kind of analysis (X  Y)
3. Recode your data so that you have all variables in appropriate format, create new
variables from existing ones
4. Check the assumptions for the analysis of choice
5. Run your analysis
6. Check the rest of the assumptions

Lecture 2

Statistical inference
= concluding something about the population based on a sample

Procedure of hypothesis testing
1. Define H0 (this involves an equality, and from this, the Ha, immediately follows, that
is its complement)
2. Check the data, and calculate or simulate how likely it is to end up with your data if
H0 would be true (typically stat does this for you)
3. Draw a conclusion
4. Confidence intervals are sets of values for which H0 is not rejected

,Calculating how likely data is “under H0”

We need to know the distribution of this statistic, under H0, to know how likely it is that out
data is drawn from this distribution

Empirical distribution: the center
- Measures for the center of a distribution
o Median : 50% more and 50% less
o Mode : occurs most
o Mean  favorite
- Measures for the spread of the distribution
o Max – Min
o P75 – p25
o Standard deviation

Empirical distributions can take on any kind of shape.
We can measure the shape: skewness and kurtosis




The best know theoretical distribution: the standard normal distribution
- Has a mean mu and standard deviation sigma

Hypothesis testing terminology:
- H0 = the baseline of hypothesis
- Alpha = the probability of rejecting H0, when it is actually true (“how likely is it, if H0 is
true, that I get data as I have them, or data that are further away from H0?”)
- P-value < Alpha  H0 rejected
- H0 is always supported never true and rejected and not false

The central limit theorem
- The mean of a large enough sample from an arbitrary distribution has a shape of a
normal distribution

if p > 0.05 then H0 is supported, if p < 0.05 then H0 is rejected.

, Lecture 3 calculating scales

Item battery / scale




Item batteries
- Single question is a rough scale
- Item value consists of
o True value
o Item-specific value
o Noise
- With more items, noise cancels out
- With more items, distribution will be more normally distributed

Generating scale score

“alpha feeling*, gen (happy) item
Hist happy “

Scale score = mean of items (after reversing)
- Stata automatically transforms negative items, by adding a minus
- Scale is not from 1-6 any more

“replace feeling1 = 7 – feeling1
Replace feeling4 = 7 – feeling4
Alpha feeling*, gen (happy2) item
Hist happy2”

Recode = 1 specific value and replace = the whole row will be changed

Points of warning
- Scale score – mean of items
- Stata automatically determines a sign
- If you do not want this use
o “alpha varlist, gen (newvar) item asis”

Points of warning 2
- If almost all values are missing, a mean might be based on a single observation
- To ensure at leas 5 observations use:
o “alpha varlist, gen(newvar) item min (5)”

Points of warning 3
- If the values are not on the same scale, this will be wrong
- To ensure that variables have the same scale
o “alpha varlist, gen (newvar)std

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper maritvanderlit. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 62890 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,49
  • (0)
  Kopen