in dit document staan alle slides van de hoorcolleges + uitleg van de docent (erg gedetailleerd) + alle r-codes met uitleg (hoe je eraan komt en wat het betekent) + de output in R-studio.
CHAPTER 22: Multiple linear Regression, Model violations
Motivation:
•The market-model example:
(Y = ‘daily stock price of Heineken’ on X= ‘daily price of AEX’)
-model requirements were checked graphically
-transformation of Y and X into daily returns (%) was suggested
-visual observations can be misleading
–proper tests are needed
•Amazon ebook sales: no checks have been done!
(Y = `dollar sales from published ebooks’ on X= `ebookprice’)
•Baseball teams’ performance: no checks have been done!
(Y= `runs per season’ on X= `on-base and slugging percentages’)
•Wage differences: no significant differences detected (H0). Is it due to H0 being valid, small sample
size, or invalid assumptions?
22.1 Collinearity (=if the correlation between 1 explanatory variable and linear combination of some
other explanatory variables is very strong, it can lead to collinearity)
-does not influence SSE and hence the usefulness of the model
-but interpretation of the regression coefficient becomes harder
-the values of t-tests are biased towards zero
-proving the individual significances may be hard
What can be done? (against collinearity)
-only take action if necessary (collinearity isn’t always the case, there is a possibility of it)
-possible action: remove a perpetrating variable from the model or transform them into linearly
independent components
-if caused by squared or interaction terms, the problem can occasionally be solved by switching to
centered variables (if it is possible), that is, using
22.3: Non-linearity
Is the linearity in the basic assumption E ( Y )=β 0 + β 1 X appropriate?
Consequences? Model and estimates are incorrect IF LINEARITY IS VIOLATED!
What can be done? Find a correct model specification (for example logarithms, or dummies, etc)
This can often be detected by studying the residuals
The existence of non-linearity can be tested as follows:
-estimate the original model E ( Y )=β 0 + β 1 X 1+ ..+ β k X k
-create the variable of the accompanying predictions ŷ
-extend the original model by including the square of the prediction (for example, with coefficient γ =
gamma!):
, First estimate
the normal model, after that
extend the model with PREDICT2
with using the cbind function
conclusion: model should be
extended to a non-linear one!
22.2: Heteroskedasticity (if homoskedasticity is violated!)
Or of its second-order counterpart with interactions. The usefulness of this model, H 0 : E ( ε 2 ) =γ 0
indicates the presence of heteroskedasticity (if the x_K’s are not equal to 0, there is
homoskedasticity)
What can be done?
,- Heteroskedasticity-consistent standard errors can be used to obtain confidence intervals/tests
for parameter values
- Weighted least squares (not addressed here!)
not discussed in
lecture, because
there is
homoskedasticity
here!
Aux model is
explained by a linear
of quadratic function!
it is gamma0 +
gamma1X1
or gamma1X1 +
gamma 2 X1^2
Third step: regress aux model on price e-book (first option above). Alternative: regress aux model on
price e-book and square of e-book price! (=second option above!). We have to look to F-statistic and
its p-value to check whether the auxiliary model is useful
, Possible solutions as H 0 :γ =0 is rejected (because p-value < any reasonable alpha!):
- Heteroskedasticity consistent standard errors
- Weighted least squares estimation, that is, standardizing data so that errors become
homoscedastic
This is still the amazon example, and now we know there is heteroskedasticity!
standard output =
valid under homo- AND
heteroskedasticity! BUT,
standard error, t-value and
p-value are only valid
under homoscedasticity (if
obtained with lm-
command!)
= alternative procedure
how to obtain the errors
that are also valid under heteroskedasticity! (ESTIMATED ARE FOR BOTH EQUAL!)
22.3 Non-normality (= not crucial for outcome!)
Consequences:
-the LS estimators are generally not normally distributed
-the LS estimators are not optimal anymore
-the statistical conclusions thus cannot be trusted
-however, these problems are less serious for large sample sizes (CLT implies that the LS-estimators
are approximately normal) with the main exception being prediction intervals
Non-normality can be detected with the Kolgomorov-Smirnov, Shapiro-Wilk, or Lilliefors test and
other test procedures (see chapter 24)
What can be done?
- A perfect remedy does not exist
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Economiestudentje. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.