100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary for Exam: Experimental Research Methods €8,99   In winkelwagen

Samenvatting

Summary for Exam: Experimental Research Methods

 102 keer bekeken  7 keer verkocht

This is a detailed summary of the course (including lectures, reading material) Experimental Research Methods in Psychology Year 2. This summary includes everything that is necessary for the exam as well as SPSS notes.

Voorbeeld 4 van de 101  pagina's

  • 25 mei 2022
  • 101
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
ewahundenborn
1



Summary: Experimental Research Methods


Lecture 1: Introduction (Ch. 4, 5.6-5.9, 6-8, 12)
 Experimental research methods -> techniques that show us how to
analyse experimental data


Descriptive Statistics
 = summarize data
 Data = numerical inform. of a population or sample




 help summarize data -> list of raw data is unclear
 two ways to summarize data: distribution or sample statistics

Distribution
 data summarized by grouping data with the same score
 this can be done in frequency distribution table or histogram
 SPSS syntax to generate frequency distribution and histograms (syntax important
exam)

Sample statistics
 Data summarized using characteristic features of the distribution
 What are characteristic features of a distribution?
1. Most characteristic score of a distribution = central tendency
2. How much do scores deviate from the most characteristic score = dispersion
(variance)
Central tendency

 Measures of central tendency are mean, median and mode
 Mean of the data is the sum of all scores divided by the total number of scores
 By hand:

, 2


Dispersion

 Measures of dispersion are range, variance and the standard deviation
 Variance of data is the sum of all squared deviance scores divided by the number of
scores minus one
 𝑠 = , square root of variance = standard deviation, √𝑠

Inferential statistics
 Descriptive statistics suffices if we have data of the entire population
 Almost always we only have data of a sample & not the population, because:
1. Too expensive
2. Takes too long to collect these data
3. Sometimes impossible
 Using inferential statistics, can draw conclusions about a population based on a
sample
 There are three “procedures” in inferential statistics:
1. Hypothesis testing
2. Point estimation
3. Interval estimation -> confidence interval

Hypothesis testing
 Question: What is the mean of the population from which a sample of 50 cases was
drawn?
 Examine whether mean of population is equal to a certain value or not -> hypotheses
are exclusive (only one H can be true) and exhaustive (all possible options should be
included)
 Ex.: 𝐻 : 𝜇 = 2.5 and 𝐻 : 𝜇 ≠ 2.5
 Two-sided test (𝐻 contains ≠), one-sided test (𝐻 contains > of <)
 Test whether you can reject 𝐻 or not, if you reject 𝐻 , you conclude 𝐻 , i.e. µ is not
equal to 2.5
 Rules of thumb for creating hypotheses:
1. 𝐻 contains “=” -> always the case
2. 𝐻 contains expectations of researcher -> often, but not always the case
 One sided t-test 𝐻 : 𝜇 < 2.5 𝐻 : 𝜇 > 2.5

Steps in hypothesis testing
Step 1: Formulate hypotheses 𝐻 : µ = 2.5 and 𝐻 : 𝜇 ≠ 2.5
Step 2: Determine decision rule to decide when result is statistically sig. -> p < 𝛼
Step 3: Determine p-value based on SPSS output
Step 4: Decision on sig and conclusion

 Apply to our ex.: Syntax

, 3




Logic hypothesis testing
 Make an assumption about value of parameter (here µ) – null H (step 1)
 This value is true, determine the possible values the sample statistic (here 𝑥̅ ) can take
(sampling distribution of 𝑥̅ ) in a simple random sample of N cases
 Mean of sample distribution is µ, variance is 𝜎 ⁄𝑁
 Using that sampling distribution, you determine the probability, so-called p-value
that the value of 𝑥̅ or a more extreme value occurs
 In step 3 you determine position of 𝑥̅ in the sampling distribution, so you also
implicitly determine p-value
 If p-value is lower than 𝛼: If 𝐻 true, then probability that I observe this value for 𝑥̅ or
an even more extreme value is smaller that 𝛼. This probability is so small that I do
not trust my null H anymore. I reject 𝐻 .
 If p-value is larger than 𝛼: If my 𝐻 is true, then the probability that I observe this
value for 𝑥̅ or an even more extreme value is quite large. I do not have enough
reasons to doubt the correctness of 𝐻 . I do not reject 𝐻 .
 In step 2, determine 𝛼 and decision rule, in step 4 you make the decision
Remark
One of the assumption is that sample is a ‘simple random sample’ meaning:

 All cases have an equal chance to be sampled
 Cases are selected independently of another
Test cannot be used if these assumptions are not met




One-sided vs. two-sided testing
 Logic for one-sided and two-sided testing is the same
 SPSS output is always two-sided
 Convert two-sided “sig.” in SPSS output to correct (one-sided) value

, 4




Point estimation
 Is used to answer the following question: What is the best guess of this parameter?
 Which value lies closest to population value
 In case of the mean µ, the guess is 𝑥̅
 In case of variance 𝜎 , best guess is 𝑠

Interval estimation
 With confidence intervals, you answer the following question: What is the interval in
which the value of the parameter lies with 95% confidence?
 95% CI for µ: in 95% of times I draw a sample of N=50, CI will contain µ
 Formula: 𝑥̅ ± 𝑡𝐶𝑉 ⋅ 𝑠⁄√𝑁




Relation CI and testing
 you can use CI to test two-sided hypotheses
 Decision rule: two-sided test with sig. level 𝛼
 if 𝜇 falls in the 𝐶𝐼( )⋅ % you cannot reject 𝐻 in favour of two-sided alternative
 if 𝜇 does not fall in the 𝐶𝐼( )⋅ % you can reject 𝐻 in favour of two-sided
alternative

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ewahundenborn. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 73918 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,99  7x  verkocht
  • (0)
  Kopen