100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Deep Learning Summary Final Exam €7,99   In winkelwagen

Samenvatting

Deep Learning Summary Final Exam

 75 keer bekeken  5 keer verkocht

Extensive summary for the course 'Introduction to Deep Learning'. Including all lecture content (excl practicals) with extra notes and explanations added to make it the most clear.

Voorbeeld 4 van de 82  pagina's

  • 3 juni 2022
  • 82
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
saskiakriege
Introduction to Deep Learning (800883-B-6)
Summary Lectures Final Exam
CSAI year 3
Written by Saskia Kriege

,Lecture 1 – Introduction and MultiLayer Perceptron
Neural Networks
Train = changing parameters
Trying to optimize the black box by changing numbers (parameters), done by understanding
the error that the model makes
Use error to change parameters of the network, to estimate the actual function of the network

Universal Function Approximator
Approximate functions
Y = f(x) → output y, input y, figure out the function f(x)

Input x → NN (approximate an unknown function y = f(x)) → output y

History and Context – NOT EXAM MATERIAL
Ramon y Cajal → connectionist approach of how the brain works
Individual tissues doing individual ones doing computations by themselves → neurons
Those neurons were connected, connections changed how they were firing
Emerging from this is intelligence

McCulloch and Pitts
Computers were emerging, idea to build mathematical models of this idea of the brain
Logic Gates based on connectionist approach, little units putted together gives a more
complex thing
Based on Logic, input and output only 1’s and 0’s.

Rosenblatt
The Perceptron → idea we are still using for NN
Changed → how they’re trained and put together
Perceptron learning parameters (weights)
Weight + input gives a certain output

Perceptrons and the AI Winter
Minsky and Papert
You cannot solve simple problems with this perceptron → not taking us closer to what the
brain does
Basic problems cannot be solved (sort problem)

People stopped believing in AI, funding disappeared from research

The AI Winter
Some problems could not be solved, using a perceptron was not complete enough.

1980s Boom
Found out how to train network in different ways, got more interesting results
Journals, conferences appeared

Neocognitron – Fukushima → image processing for NN

Backpropagation

,What we use to train networks

Lecun → digit recognition

Another AI Winter → we didn’t have the data and computers to apply the methods we found
out

Big Data
Computers put together with a lot of data
2012 → The cat experiment → neurons learnt to respond to specific stimuli like cats

ImageNet = image database organized according to the WordNet hierarchy, in which each
node of the hierarchy is depicted by hundreds and thousands of images
→ has a lot of biases

AlexNet
Deep CNN trained on ImageNet using GPUs.
Hinton et al.

Generative Adversarial Networks
You have to generate data instead of other way around
Relevant in +- last 5 years

Deep Reinforcement Learning
Neural network
Inputs and expected output changes
How to produce behavior that’s relevant for a particular task

Feed in a frame, calculate error

Deep Learning
Inside AI we have ML (learning from data)
More narrow in ML we have Representation Learning (take the data, model has to figure out
what to do). Transform data into something else
More narrow DL → many layers, each layer trying to extract more abstract features

Practical Deep Learning

CPU vs GPU
GPUs allow for parallelism
CPU → sequential

CPU → each core can do 1 thing at a
time
GPU → you can do as much cores there
are at the same time

DL = multiplications and additions

, GPU allows us to do it more fast, CPU cores are more powerful, but GPU allows to do the
calculations at the same time
Networks require GPU, else it would be too slow

GPU can process many pieces of data at same time

The main difference between CPU and GPU architecture is that a CPU is designed to handle
a wide-range of tasks quickly (as measured by CPU clock speed), but are limited in the
concurrency of tasks that can be running. A GPU is designed to quickly render high-resolution
images and video concurrently.

The Perceptron
A model of a neuron
Dendrites (input) → body of neuron → axon (output)
Then it connects to other neurons through electrical chemical signals, interacting with other
neurons (synapse & synaptic cleft)

A simpler model of a neuron
Incoming dendrites → soma (S) (once threshold is passed), going to axon triggering the rest
Some will increase/decrease in the soma

Incoming dendrites summed together and passed on




Rosenblatt → Perceptron designed to illustrate some of the fundamental properties of
intelligent systems in general, without becoming too deeply enmeshed in the special, and
frequently unknown, conditions which hold for particular biological organisms

Inputs → black box → outputs
Inputs take signals, in the body there is a function that will accumulate those signals by a
summation
Inputs x1, x2, x3
There are weights in the arrows
Those are summed up in the body
Gives y

Linear Classifier → inputting some values and having some weights.
Linearly combining inputs and deciding if they fit given a pattern
Bigger than a threshold → belongs to a certain class

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper saskiakriege. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75323 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99  5x  verkocht
  • (0)
  Kopen