100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Summary chapter 2 and 6 dynamic econometrics (RUG) €25,48
In winkelwagen

Samenvatting

Summary chapter 2 and 6 dynamic econometrics (RUG)

 0 keer verkocht

Summary chapter 2 and 6 dynamic econometrics (RUG), covering large-sample theory and serial correlation.

Voorbeeld 2 van de 7  pagina's

  • Nee
  • 2 en 6
  • 12 juni 2022
  • 7
  • 2021/2022
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (1)
avatar-seller
carinewildeboer
Dynamic book notes
Carine Wildeboer
June 2022


Chapter 2, Large-Sample Theory
2.1 Review of Limit Theorems
p
{zn } converges in probability to constant α (zn −
→ α) if, for any ϵ > 0: lim P (|zn − α| > ϵ) = 0.
n→∞
a.s.
{zn } coverges almost surely to constant α (zn −−→ α) if: P ( lim zn = α) = 1.
n→∞
m.s.
{zn } converges in mean square to constant α (zn −−−→ α) if: lim E[(zn − α)2 ] = 0.
n→∞

Lemma 2.1 Convergence in distribution and in moments:
Let αsn be the s-th moment of zn and limn→∞ αsn = αs , where αs is finite. Then:
d
”zn −
→ z” ⇒ ”αs is the s-th moment of z.”

Lemma 2.2 Relationship among the four modes of convergence:
m.s. p m.s. p
(a) zn −−−→ α ⇒ zn −
→ α. So: zn −−−→ z ⇒ zn −
→ z.
a.s. p a.s. p
(b) zn −−→ α ⇒ zn −
→ α. So: zn −−→ z ⇒ zn −
→ z.
p d
(c) zn −
→ α ⇒ zn −
→ α.

Lemma 2.3 Preservation of convergence for continuous transformation:
Suppose a(·) is a vector-values continuous function, does not depend on n.
p p
(a) zn −
→ α ⇒ a(zn ) −
→ a(α). Or: p limn→∞ a(zn ) = a(p limn→∞ zn )
d d
(b) zn −
→ z ⇒ a(zn ) −
→ a(z).

Lemma 2.4:
d p d
(a) xn −
→ x, yn −
→ α ⇒ xn + yn −
→ x + α. Slutzky’s Theorem
d p p
(b) xn − → 0 ⇒ yn′ xn −
→ x, yn − → 0.
d p d
(c) xn −
→ x, An −
→ A ⇒ An x n −
→ Ax. Slutzky’s Theorem
d p d
(d) xn − → A ⇒ x′n A−1
→ x, An − → x′ A−1 x, where An and xn conformable and A nonsingular.
n xn −


Lemma 2.5 The Delta Method: √
p d
→ β and: n(xn − β) −
{xn } is a sequence of K-dim. rvs s.t. xn − → z and suppose a(·) : Rk → Rr
has continuous first derivatives with A(β) denoting the r × K matrix of first derivatives evaluated
∂a(β)
at β: A(β)(r×K) ≡ . Then:
∂β ′
√ d
n[a(xn ) − a(β)] −
→ A(β)z


1

, p
An estimator θ̂n is consistent for θ if: θ̂n −
→ θ.
Asymptotic bias: p limn→∞ θ̂n − θ2 .
√ d
A consistent estimator is asymptotically normal if n(θ̂n − θ) −
→ N (0, Σ).
p
Chebyshev’s weak LLN: lim E[z̄n ] = µ, lim V ar(z̄n ) = 0 ⇒ z̄n −
→ µ.
n→∞ n→∞
a.s.
Strong Law of Large Numbers: Let {zi } be iid with E[zi ] = µ. Then z̄n −−→ µ.

Lindeberg-Levy CLT: Let {zi } be iid with E[zi ] = µ and V ar(zi ) = Σ. Then:
n
√ 1 X d
n(z̄n − µ) = √ (zi − µ) −
→ N (0, Σ)
n i=1

2.2 Fundamental Concepts in Time-Series Analysis
Stochastic process: sequence of random variables.
Trend stationary: if the process is stationary after subtracting from it a function of time.
Difference stationary: if the process is not stationary, but its first difference, zi − zi−1 is sta-
tionary.

Covariance Stationary Processes
A stochastic process is weakly (or covariance) stationary if:
(i) E[zi ] does not depend on i
(ii) Cov(zi , zi−j ) exists, is finite, and depens only on j but not on i.
j-th order autocovariance: γj ≡ E[(Yt − E[Yt ])(Yt−j − E[Yt−j ])]
γj Cov(zi , zi−j )
ρi ≡ = .
γ0 V ar(zi )

White Noise Process
Process with zero mean and no serial correlation:
(i) E(zi ) = 0 and (ii) Cov(zi , zi−j ) = 0 for j ̸= 0
Ergodic Theorem: If process is stationary and ergodic with E[zi ] = µ. Then:
n
1 X a.s.
z̄n ≡ zi −−→ µ
n i=1

Vector process is martingale if: E[zi |zi−1 , ..., z1 ) = zi−1 for i ≥ 2.

Random walk: z1 = g1 , z2 = g1 + g2 , ..., zi = g1 + g2 + ... + gi

Martingale difference sequence: if process gi with E[gi ] = 0 has conditional expectation
on its past values equal to zero: E[gi |gi−1 , gi−2 , ..., g1 ) = 0 for i ≥ 2.

ARCH processes: example of martingale differences, autoregressive conditional heteroskedas-
tic process.
q Process is said to be ARCH(1) if:
gi = 2
ζ + αgi−1 · ϵi

Various classes of stochastic processes:
1. Stationary
2. Covariance Stationary
3. White Noise
4. Ergodicity


2

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper carinewildeboer. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €25,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68175 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€25,48
  • (0)
In winkelwagen
Toegevoegd