100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Statistics for Premasters DSS €6,49
In winkelwagen

Samenvatting

Summary Statistics for Premasters DSS

2 beoordelingen
 222 keer bekeken  18 keer verkocht

Detailed summary of all lectures and additional notes, explanations and examples for the course "Statistics for Premasters DSS" at Tilburg University which is part of the Pre-Master Data Science and Society. Course was given by P.H.G. Hendrix and E. Fukuda during the first semester of the academic ...

[Meer zien]

Voorbeeld 5 van de 43  pagina's

  • Nee
  • Chapter 1-6, 10-15
  • 21 juni 2022
  • 43
  • 2021/2022
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (3)

2  beoordelingen

review-writer-avatar

Door: FinnJoostens • 1 jaar geleden

review-writer-avatar

Door: mdegal • 2 jaar geleden

avatar-seller
hannahgruber
Tilburg University
Study Program: Pre-Master Data Science and Society
Academic Year 2021/2022, Semester 1 (August to December 2021)


Course: Statistics for Premasters DSS, 800878-B-6
Lecturers: P.H.G. Hendrix and E. Fukuda

,Packages for R assignment & Tutorial Set-Up

• Necessary packages for doing R assignments: knitr, rmarkdown, learnr
• set up for tutorials
o load the libraries
o import the rmd file and run the document


Module 1: Introduction and Research Methods (Chapter 1 & 2)

Why do we learn statistics?
• Develop your critical and analytical thinking skills
• Become an informed consumer (media, politics, etc)
• Save money (don’t need to hire statistician)

• Effectively conduct research in terms of:
o research design
o data collection
o data analysis

• belief bias effect: people’s opinion can be influenced, making neutral conclusions is hard
“believe what we want to believe”
→ statistics = believe in data
• Simpson’s paradox: a trend appears in several groups of data but disappears or reverses
when the groups are combined

Research Design

Generating and testing theories
• Research Process
▪Theory: a hypothesized
general principle or set of
principles that explains known
findings about a topic and
from which new hypotheses
can be generated
▪Hypothesis: a prediction
typically derived from a theory
or observation
▪Falsification: the act of
disproving a theory or
hypothesis

,Measurement
• measurement: assigning numbers, labels etc to the thing to be measured
o dependent on environment: different sets of measurements can be appropriate
• theoretical construct: thing, that you are trying to take the measurement of (age, gender …)
• measure: method or tool used to make observations (e.g., survey, brain scan…)
• operationalization: process to derive a measure from a theoretical construct (logical
connection between the measure and the theoretical construct)
• variable: actual data that results after applying our measure

• Scales of Measurement: concept to distinguish between different types of variables
o binary scale variable: only two categories (yes / no)
o nominal scale variable: more than two categories, no relationship between different
possibilities (e.g., gender, eye color)
o ordinal scale variable: same as nominal but ordering the outcomes is useful,
grouping possible but no average (e.g., finishing position in a race)
o interval scale variable: numerical value is meaningful, differences between the
numbers can be interpreted (addition and subtraction are meaningful, but
multiplication is not), no natural “zero number” (e.g., temperature: 0°C is still valid)
o ratio scale variable: zero means zero, multiplication and division are meaningful (e.g.,
response time in a speed test)

• Continuous vs discrete variables Continuous Categorial/
o continuous: Discrete
a value in the middle of two
Nominal X
others is always possible
Ordinal X
o discrete:
Interval X X
sometimes there is nothing in the middle
Ratio X X
o Likert Scale (e.g., 5-point Likert Scale) as quasi-interval scale because it is hard to
classify it
1 2 3 4 5
Strongly Strongly
disagree agree

Reliability of a measurement
• reliability of a measure tells you how precisely you have measured something
→ it is not about the correctness of the measure, but about its consistency
→ The ability of the measure to produce the same results under the same condition

• Different ways of measuring reliability
→ not all measurements need to possess all forms of reliability!
o test-retest-reliability: Same results when repeat measurement at different time?
o inter-rater-reliability: Consistency across people. Do they produce the same answer?
o parallel forms reliability: same results when using different but theoretically
equivalent measurements?
o internal consistency reliability: Do individual parts with similar functions have similar
results?

,Predictors and Outcome
Role of the Variable Classical Name Modern Name
y axis: “to be explained” Dependent variable (DV) Outcome
x axis: “to to the explanation” Independent variable (IV) predictor

Experimental vs Non-Experimental Research
• Experimental Research: full control over all aspects of the study
o manipulate or vary the predictor to see how outcomes change while everything else
is kept stable
→ randomization helps to exclude other factors
→ Statements can often be made about cause and effect
• Non-Experimental Research: Any study in which the researcher has less control
• Quasi Experimental Research: Experiment without control over predictor
• Case Studies: Very detailed description of one or a few instances
• Correlational Research: Observing what naturally goes on in the world without directly
interfering with it.
• Cross-sectional Research: This term implies that data come from people at different age
points, with different people representing each age point.

Validity of a measurement
• validity of a measure tells you how accurate the measure is
→ it’s about the correctness of the answer regarding the measure
→ Can you trust the results of your study?
• Types of validity
! Internal validity Ability to draw the correct conclusions about causal
relationship between variables
! External validity Will the results happen in “real life”?
→ Degree of generalizability
Construct validity Do you measure what you want to measure?
Face validity If a measure “looks like” it’s doing what it’s supposed to
→ often not important because does not affect the content
Ecological validity The set-up (design) of the study should closely approximate
the real-world scenario
→ close to external validity but less important

, Confounds, artifacts and other threats to validity
• confound: additional, often unmeasured variable that turns out to the variable of interest
o lack of internal validity
o often within non-experimental studies
• artifacts: something that might threaten the external validity or construct validity of your
results
o often within experimental studies
• threats to validity
o history effects: specific events occur during study
o maturation effects: people change over time
o repeated testing effects: belongs to history effect, first study affects second one
o selection bias: groups differ in relevant characteristics
o differential attrition: people get tired about the study and drop out
o non-response bias: missing data due to no response of people
o regression to the mean: extreme values will become moderate
o experimenter bias: experimenter influences results
o reactivity / demand effects: people alter their performance when being watched
o placebo effect: the mere fact of being treated changes the outcome
o situation, measurement, subpopulation effects: all other treats to external validity
o fraud, deception, self-deception: not all scientists are honest

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper hannahgruber. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 51662 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  18x  verkocht
  • (2)
In winkelwagen
Toegevoegd