100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Linear Algebra (X_400649) €6,57   In winkelwagen

Samenvatting

Samenvatting Linear Algebra (X_400649)

 103 keer bekeken  9 keer verkocht

Samenvatting van het vak Linear Algebra als gegeven aan de Vrije Universiteit Amsterdam.

Voorbeeld 3 van de 28  pagina's

  • 12 juli 2022
  • 28
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
lauraduits1
I. 1
Systems of linear equations


A linear equation in the variables Xi .
.
. .
.
Xn is an equation that can be written

in the form dik t 92×2 t . . .
tanxn = b.

A
system of linear equations is a collection of one or more linear

linear equations involving the same Variables .
2×1 -
Xzt 1.5×3=0

A solution of the
system is a list (51,52 Sh ) Xi 4×3=-7
-




.
.
.




Of numbers that makes each equation a true statement when the values


51 , . . .

,
Sn are substituted for Xi , . . .
,Xn , respectively .




The set of all possible solutions is called the solution set of the linear

Two linear
system .


systems are called equivalent if
they have the same


solution set .



.




A system of linear equations is said to be consistent if it has either one


solution or
infinitely solutions is inconsistent if it has
many ; a system
no solutions .




The essential information of linear be recorded
a
system can compactly

in called matrix
a
rectangular array augmented
column
column

X, -


2×2 t X3 =
0 I -2 I row I -2 I 0


2×2 0×3 =
0 0 2 -0 0 2 -0 0
-




5×1 -


5×3 =
10 5 0 -5 5 0 -5 10


linear system coefficient matrix matrix
augmented


An
augmented matrix of a system consists of the coefficient matrix

with an added column containing the constants from the right side of the


equations
The size of a matrix tells how many rows and columns it has .




An m x n matrix contains m rows and n columns

The basic strategy to solve a linear system is to replace one system

with an equivalent system that is easier to solve .




Three basic to simplify linear
operations are used a
system :
1. replacement replace one row
by the sum of itself and a multiple

of another row


2. interchange interchange two rows


3. scaling multiply all entries in a row by a nonzero constant

, Two if there is of
matrices are called row
equivalent a sequence elementary
row operations that transform one matrix into the other


Two fundamental questions about a linear system are :




1. IS the system consistent ; that is, does at least one solution exist ?

2 .
If a solution exists ,
is it the only one ; that is ,
is the solution unique ?


1.2 row reduction and echelon forms



A nonzero row or column in a matrix means a row or column that contains

at least one nonzero entry .




A row)
leading entry refers to the leftmost nonzero entry ( in a nonzero

A
rectangular matrix is in echelon form if it has the following properties :




1 all nonzero rows are above rows of all zeros echelon matrix
.



any
2 -3 2 I
2. each leading entry of a row is in a column to the


right of the leading entry of the row above it 0 I -4 0
I
3 all entries in column below 0 0 0
.
a a
leading entry are zeros 2


If a matrix in echelon form satisfies the following additional conditions ,




then it is in reduced echelon form :

I 0 0
2g
4 the leading entry in each nonzero row is I
0 16
0 I
.




is in its column
5. each
leading 1 the only nonzero entry O 0 I 3

It a matrix A is now equivalent to an echelon matrix U ,
reduced echelon matrix


we call U an echelon form of A ;


if u is in reduced echelon form ,
we call U the reduced echelon form of # .




Uniqueness of the reduced echelon form

Each matrix is now equivalent to only one reduced echelon matrix .




A pivot position in a matrix A is a location in A that corresponds to a



leading 1 in the reduced echelon form of A. A pivot column is a column

of A that contains a pivot position .




A pivot is a nonzero number in a pivot position that is used as needed

to create zeros via row operations

pivot columns

*
I 4 5 -




g
-



7
am
* * *



0 4 form : 0
am
2 -6 -6 General * * *


*
pivot 0 0 0 0
am
0 0 -5 0

, row reduction algorithm to produce a matrix in echelon form :




This is
step I
begin with the leftmost nonzero column .
a pivot column .




The pivot position is at the top .




Step 2 select nonzero entry in the pivot column pivot If
a as
necessary
-

.
,




interchange rows to move this entry to the pivot position .




step 3 use row replacement operations to create zeros in all positions

below the pivot .




Step 4 cover cor ignore ) the row
containing the pivot position and


cover all rows ,
if
any ,
above it .

Apply steps I -3 to the


sub matrix that remains .
Repeat the process until there are no



more nonzero rows to
modify .




If we want the reduced echelon form ,
we perform one more step .




Step with the
5 beginning rightmost pivot and working upward and to


the left , create zeros above each pivot . If a pivot is not 1 ,




make it 1 by a scaling operation .




The combination of steps I -4 is called the forward phase of the row


reduction
algorithm . Step 5 is called the backward phase .




In the
following system of equations , the variables X, and Xz are called

basic variables and Xs is called a free variable .
The statement

"
Xz is free "
in the parametric description means that are free
you
to chose value for X3
any



{
.




I 0 -5 I ×,
-


5×3 = 1 Xi =
It 5×3

0 1 I 4 Xz TX3 = 4 Xz= 4 -
Xs

O O O O 0 =
0 Xz is free




whenever a system is inconsistent .
the solution set is empty , even

when the
system has free variables . In this case ,
the solution set


has no parametric representation .




Existence and uniqueness theorem

A linear consistent iff the rightmost column of the
system is augmented
matrix is not a
pivot column .
If a linear
system is consistent , then the

solution set contains either a unique solution or infinitely many
solutions c. when there is at least one free variable )

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lauraduits1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,57. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,57  9x  verkocht
  • (0)
  Kopen