Eigenschap Bewerkingen Voorbeelden
Commutatieve eigenschap Optellen 48 + 102 = 102 + 48 =
(wisseleigenschap) Vermenigvuldigen 6x7=7x6=
Distributieve eigenschap Vermenigvuldigen 16 x 25 = 10 x 25 en 6 x 25 =
(verdeeleigenschap) Delen 84 : 12 = 60 : 6 en 24 : 6 =
Associatieve eigenschap Optellen (3 + 4) + 5 = 3 + (4 + 5)
(schakeleigenschap) Vermenigvuldigen (2 x 6) x 4 = 2 x (6 x 4)
Compenseren Optellen 194 + 218 = 200 + 212 =
(termen veranderen) Aftrekken 8745 – 311 = 8734 – 300 =
Groter EN kleiner maken (GEK) Vermenigvuldigen 36 x 3 = 12 x 9 =
Groter OF kleiner maken (GOK) Delen 210 : 30 = 21 : 3 =
2. Talstelsels
Romeins talstelsel - Additief talstelsel
Cijfers
I=1
V=5
X = 10
L = 50
C = 100
D = 500
M = 1000
Regels
• Een symbool gevolgd door een symbool met een even grote of kleinere waarde betekent
optellen.
DC = 500 + 100 = 600
XX = 10 + 10 = 20
• Een symbool gevolgd door een symbool met een grotere waarde betekent aftrekken.
IX = 1 – 10 = 9
LM = 50 – 1000 = 950
Regels
• Er wordt gebruikt gemaakt van de 10 cijfers 0 t/m 9.
• De waarde van een getal wordt bepaald door de positie van de cijfers.
1000 100 10 1
(10 tot de macht 3) (10 tot de macht 2) (10 tot de macht 1) (10 tot de macht 0)
3 1 7 3
3 = 3000 1 = 100 7 = 70 3=3
Samenvatting van Emma Ankoné 1
,Hexadecimaal positioneel getalsysteem – Positiestelstel en zestienstelsel
Telrij is 0 – 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – A – B – C – D – E – F
Regels
• Er wordt gebruik gemaakt van 16 cijfers 0 t/m 9 en A t/m F.
• De waarde van een getal wordt bepaald door de positie van de cijfers.
4.096 256 16 1
(16 tot de macht 3) (16 tot de macht 2) (16 tot de macht 1) (16 tot de macht 0)
3 1 7 3
3 = 3 x 4096 = 12.288
1 = 1 x 256 = 256
7 = 7 x 16 = 112
3=3x1=3
Van hexadecimaal naar decimaal
Benoem het decimale getal bij het hexadecimale getal 2B.
Positiewaarde 16 (16 tot de macht 1) 1 (16 tot de macht 0)
Getal op die positie 2 B
- Je plaatst het hexadecimale getal in het positieschema.
- Vermenigvuldig de cijfers en letters met de positiewaarde.
2 x 16 = 32
B x 1 = ……. B = 11, 11 x 1 = 11
32 + 11 = 43
Benoem het decimale getal bij het hexadecimale getal 4EA.
Positiewaarde 256 16 1
(16 tot de macht 2) (16 tot de macht 1) (16 tot de macht 0)
Getal op die positie 4 E A
- Je plaatst het hexadecimale getal in het positieschema.
- Vermenigvuldig de cijfers en letters met de positiewaarde.
4 x 256 = 1024
E x 16 = …….. E = 14, 14 x 16 = 224
A x 1 = ………. A = 10, 10 x 1 = 10
1024 + 224 + 10 = 1.258
A = 10 B = 11 C = 12 D = 13 E = 14 F = 15
Samenvatting van Emma Ankoné 2
, Van decimaal naar hexadecimaal
Benoem het hexadecimale getal bij het decimale getal 332.
Positiewaarde 256 16 1
(16 tot de macht 2) (16 tot de macht 1) (16 tot de macht 0)
Getal op die positie 1 4 C
- Maak een positieschema. De meest linker positieschema moet de grootst mogelijke
positiewaarde zijn die kleiner is dan het decimale getal dat je wilt omzetten.
- Kijk naar de eerste kolom. Hoe vaak past deze positiewaarde in het decimale getal?
Noteer dit in het positieschema.
256 past 1 keer in het decimale getal 332.
- Bepaal de rest.
332 – 256 = 76 is de rest.
- Kijk naar de tweede kolom. Hoe vaak past deze positiewaarde maximaal in de rest?
Noteer dit in het positieschema.
16 past 4 keer in het decimale (rest)getal 76, namelijk 4 x 16 = 64.
- Bepaal de rest en noteer dit in het positieschema.
76 – 64 = 12
12 in het hexadecimale talstelsel is C.
Benoem het hexadecimale getal bij het decimale getal 161.
Positiewaarde 16 1
(16 tot de macht 1) (16 tot de macht 0)
Getal op die positie A 1
- Maak een positieschema. De meest linker positieschema moet de grootst mogelijke
positiewaarde zijn die kleiner is dan het decimale getal dat je wilt omzetten.
- Kijk naar de eerste kolom. Hoe vaak past deze positiewaarde in het decimale getal?
Noteer dit in het positieschema.
16 past 10 keer in het decimale getal 161. Het hexadecimale getal voor 10 is A.
- Bepaal de rest.
161 – 160 = 1.
- Kijk naar de tweede kolom. Hoe vaak past deze positiewaarde maximaal in de rest?
Noteer dit in het positieschema.
1 past 1 keer in het (rest)getal.
Samenvatting van Emma Ankoné 3
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper emmaankone. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €9,99. Je zit daarna nergens aan vast.