100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Samenvatting Trillingen, golfbewegingen, geluid €3,49
In winkelwagen

Samenvatting

Samenvatting Trillingen, golfbewegingen, geluid

 3 keer verkocht
  • Vak
  • Instelling

De hoofdstukken trillingen, golfbewegingen en geluid samengevat.

Voorbeeld 3 van de 24  pagina's

  • 12 augustus 2022
  • 24
  • 2022/2023
  • Samenvatting
avatar-seller
Trillingen


Begrippen:
Trilling / oscillatie = een periodieke beweging veroorzaakt door de verstoring van een stabiele
evenwichtssituatie
Uitwijking = de afstand x van de massa tot het evenwichtspunt, op elk moment in de tijd
Amplitude A = de grootte van de maximale uitwijking/de grootste afstand tot het
evenwichtspunt
Cyclus = een complete heen-en-weer-beweging (van x = +A naar x = -A)
Periode T = tijd die het kost om een volledige cyclus te doorlopen T=1/f (s)
Frequentie f = het aantal doorlopen cycli per seconde. 1 Hz = 1 cyclus per f = 1/T (Hz)
seconde (s-1)


•Trillingen van een veer
- Een harmonische trilling: altijd onder invloed van een kracht evenredig en tegengesteld aan de
uitwijking
- Als een voorwerp steeds langs dezelfde weg heen en weer trilt/oscilleert, waarbij iedere trilling
evenveel tijd in beslag neemt = een periodieke beweging

- Periodieke beweging → een voorwerp voert een trilling uit aan het uiteinde
van een schroefveer


We nemen aan dat: k F=0
m
- de massa m van de veer mag verwaarloosd
X=0
- dat de veer horizontaal gemonteerd is
- zodat het voorwerp met massa zonder wrijving over het horizontale oppervlak glijdt
Iedere veer heeft uit zichzelf een lengte waarbij hij geen kracht uitoefent op de massa m
De plaats van de massa op dit punt wordt evenwichtsstand genoemd: x = 0



m m m




Voorwerp trekken naar rechts → veer uitgerokken
Voorwerp duwen naar links → veer gecomprimeerd

,Steeds oefent de veer kracht F uit op de massa in de richting waarin de massa terugkeert naar

de evenwichtsstand → terugdrijvende kracht F genoemd

F = -k.x → door de veer uitoefende kracht

Het minteken in de vgl. → de terugdrijvende kracht werkt altijd in tegenovergestelde richting
van uitwijking x

Veer ingedrukt → x negatief, de kracht → naar rechts gericht
De evenredigheidsconstante k = veerconstante/veerstijfheidsconstante
Hoe hoger de waarde van k, hoe groter de kracht die nodig is om de veer een zekere afstand uit te
rekken => hoe stijver de weer hoe groter k



F1
m m




→ →
Kracht F → niet constant, hangt af van de mate van uitrekking: F1 < F2

Daarom is versnelling a van de massa niet constant → vergelijkingen voor constante
versnelling gaat niet

F = -k.x → door de veer uitoefende kracht Fext = +k.x → externe kracht op de veer




Wat als de veer ingedrukt is over een afstand x = -A en dan
losgelaten wordt?
- Veer oefent kracht F uit op massa m → geduwd naar
evenwichtsstand
- De massa heeft traagheid → deze schiet met snelheid v de
evenwichtsstand voorbij
- Het punt waar de massa de evenwichtsstand bereikt → F = 0
- Snelheid v → bereikt vmax
- Terwijl de massa verder naar rechts beweegt, → een
toenemende afremmende kracht → de massa vertraagt en een
ogenblik tot stilstand x = A
- Vervolgens begint de massa terug te bewegen in de
tegenovergestelde richting en versnelt ze tot het evenwichtspunt
wordt gepasseerd, waarna ze weer afremt en een snelheid nul
bereikt op het oorspronkelijke beginpunt x = -A

, - Daarna herhaalt de massa de beweging waarbij het heen en weer gaat tussen x = A en x = -A
- de trilling van een verticaal opgehangen veer verschilt niet
wezenlijk van die van een horizontale veer
- de veer is in evenwicht als:

∑ F = 0 = mg – kx0

Dus de veer wordt een extra stuk x0 uitgerekt om in evenwicht te
komen x0 = m.g/k


•Enkelvoudige harmonische beweging




Goniometrische cirkel




- de tweede wet van Newton → F = m.a

- vesrnelling → a = d.v/d.t = d/d.t.(d.x/d.t) = d².x/d.t²
- Bewegingsvergelijking voor de enkelvoudige harmonische oscillator

F = m.d².x/d.t² = -k.x → d².x/d.t² + k/m.x = 0


- Voor algemene bewegingsvergelijking:
d².x/d.t² + k/m.x = 0
- Voorstel:

x = A.cos (𝜔.t + 𝜑)
- Alternatief:

x = a.cos cos𝜔.t + b = sin𝜔.t


Klopt het?
x = x(t) twee maal differentiëren

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Se1in. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 68175 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€3,49  3x  verkocht
  • (0)
In winkelwagen
Toegevoegd