100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Wiskunde Voor Ontwerpers €6,49   In winkelwagen

Samenvatting

Samenvatting Wiskunde Voor Ontwerpers

 43 keer bekeken  2 keer verkocht
  • Vak
  • Instelling

Alle hoorcolleges gegeven door prof. Lieven Le Bruyn. Quiz's worden op een aparte document.

Voorbeeld 4 van de 37  pagina's

  • 15 augustus 2022
  • 37
  • 2021/2022
  • Samenvatting
avatar-seller
Wiskunde voor Ontwerpers

Hoofdstuk 1: Plannen en veelvlakken

Plan: De plaatsing van een aantal muren die het bouwoppervlak opdelen in een aantal ruimten zodat
een aantal activiteiten kunnen plaatsvinden.

Vlakke graf: Hoekpunten die verbonden zijn met zijden, die elkaar niet snijden en het vlak opdelen in
gebieden, waaronder ook de buitenruimte. Gebieden (kamers) zijn aangrenzend als ze een zijde
gemeen hebben.

Een plan kunnen we schetsmatig voorstellen door een vlakke graf, dat is een aantal hoekpunten
(waar muren samenkomen), een aantal zijden die deze hoekpunten verbinden (muur-fragmenten) en
die het vlak opdelen in een aantal gebieden (de kamers en de buitenruimte).



In dit voorbeeld is het aantal hoekpunten V (van ‘vertices’) gelijk aan 12,
het aantal zijden E (van ‘edges’) gelijk aan 16 en het aantal gebieden F
(van ‘faces’) gelijk aan 6 (5 kamers plus de buitenruimte)



V–E+F=2




Duale graf: die een hoekpunt heeft voor elke kamer en een zijde heeft tussen twee hoekpunten juist
dan als de kamers een muur fragment gemeen hebben.



Voor deze blauwe vlakke graf hebben we V = 5; E =7 en F= 4 en
wederom is V – E + F = 2




Trivalente vlakke graf: In elk hoekpunt komen juist drie zijden toe, en aangrenzende gebieden blijven
aangrenzend.

3-samenhangende trivalente vlakke graf: alle hoekpunten blijven verbonden als je één of twee zijden
verwijderd

, Schröder-huis plan -> 3-samenhangende trivalente vlakke graf




Veelvlak: ruimtelijke figuur verkregen door veelhoeken langs gemeenschappelijke zijden aan elkaar
te plakken. Elk hoekpunt is volledig omringd door zijvlakken en elke ribbe is de grens van juist twee
zijvlakken.

Convex veelvlak: veelvlak zodat in elk hoekpunt de som van de binnenhoeken van de aangrenzende
zijvlakken minder is dan 360°.

Trivalent convex veelvlak: convex veelvlak zodat ik elk hoekpunt juist drie zijvlakken samenkomen.



Stelling van Ernst Steinitz: Elke 3-samenhangende trivalente vlakke graf is de projectie van de ribben
van een trivalent convex veelvlak.

- Het zijvlak geeft de rand van de vlakke graf.
- Het aantal gebieden van de vlakke graf is gelijk aan het aantal
zijvlakken van het veelvlak.
- Het aantal hoekpunten van een gebied van de graf komt
overeen met het aantal hoekpunten van het zijvlak.
- We kennen alle configuraties van n kamers indien we alle
trivalente convexe veelvlakken kennen met n + 1 zijvlakken.


Elk trivalent convex veelvlak met ten hoogste 11 zijvlakken krijgen we uit de tetraheder door
opeenvolging van:

 Afknippen van een hoekpunt. (om zo een extra driehoekig zijvlak te maken)
 Opentrekken van een ribbe, indien mogelijk (als die grenst aan minstens 4-hoeken, om zo
een extra vierhoekig zijvlak te maken)

,Er bestaat dus essentieel maar één trivalent convex veelvlak met 5 zijvlakken dat we krijgen door een
top van de tetraheder te knippen, bijvoorbeeld het driehoekig prisma.




Dat twee driehoekige zijvlakken heeft en drie vierhoekige zijvlakken. -> We kunnen het driehoekig
prisma projecteren vanuit een driehoekig zijvlak of vanuit een vierhoekig zijvlak.



Uit het driehoekig prisma krijgen we de twee essentieel unieke trivalente convexe veelvlakken met 6
zijvlaken: we kunnen een opstaande zijde openrekken en dan krijgen we een balk die 6 vierhoekige
zijvlakken heeft, of we kunnen een top afknippen en dan krijgen we het veelvlak dat 2 vijfhoekige
zijvlakken heeft, 2 vierhoekige en 2 driehoekige.




Uit de twee trivalente convexe veelvlakken met 6 zijvlakken krijgen we alle vereenvoudigde
configuraties met 5 kamers. De balk kunnen we enkel projecteren vanuit een vierhoekig zijvlak, maar
de andere figuur kunnen we projecteren vanuit een driehoekig, een vierhoekig of vijfhoekig zijvlak.

De met †
aangeduide
configuratie is deze
van het
vereenvoudigde
Schröder-huis
grondplan.

, Hoofdstuk 2: symmetrie en orbifolds

Symmetrie: dit patroon is een operatie op het vlak dat dit patroon bewaart.

We onderscheiden verschillende zulke operaties.


- Translaties: verschuiven het gehele vlak in een bepaalde richting over een bepaalde afstand.




- Spiegelingen: spiegelingen het vlak ten opzichte van een rechte, de spiegel-as.




- Rotaties: draaien het vlak ten opzichte van een punt, het rotatie-centrum, over een bepaalde
hoek, de rotatie hoek.




- Glij-spiegeling: de samenstelling van een spiegeling met een translatie evenwijdig met de
spiegel-as.




Orbifold: kleinste deel van het patroon waaruit we het volledige patroon krijgen door symmetrie
operaties.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper beatrizsarriafernandes. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67163 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  2x  verkocht
  • (0)
  Kopen