100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Analyse (FEB21021) €6,99   In winkelwagen

Samenvatting

Samenvatting Analyse (FEB21021)

 25 keer bekeken  0 keer verkocht

Uitgebreide samenvatting van Analyse (econometrie EUR)

Voorbeeld 2 van de 13  pagina's

  • 4 september 2022
  • 13
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (3)
avatar-seller
LeonVerweij
Week 1
Functie
f : A → B zodat 𝑎 ↦ 𝑓(𝑎) is gegeven door het domein A, co-domein B en de regel
𝑎 ↦ 𝑓(𝑎)
Elementaire functies
𝑥 ↦ 𝑥 ! , 𝑣𝑜𝑜𝑟 𝑝 ∈ ℤ
𝑥 ↦ 𝑎 " , 𝑣𝑜𝑜𝑟 𝑎 > 0
𝑥 ↦ sin(𝑥) , 𝑥 ↦ cos (𝑥)
Nieuwe functies opstellen voor een gegeven f en g
- Som f + g
- Scalaire vermenigvuldiging c x f voor een constante c ∈ ℝ
- Product f x g
- Compositie f ∘ g
- Inverse f-1 (als f inverteerbaar is)
Compositie
2 functies 𝑓: 𝐴 → 𝐵 en 𝑔: 𝐶 → 𝐷, neem aan dat 𝐷 ⊆ 𝐴
De compositie 𝑓 ∘ 𝑔: 𝐶 → 𝐵 is gegeven door (𝑓 ∘ 𝑔)(𝑥) = 𝑓A𝑔(𝑥)B voor alle 𝑥 ∈ ℂ
Identiteitsfunctie
𝑖𝑑# : 𝐴 → 𝐴, 𝑎 ↦ 𝑎
Inverse functie
2 functies 𝑓: 𝐴 → 𝐵 en 𝑔: 𝐵 → 𝐴
f en g zijn elkaar inverse functies als 𝑓 ∘ 𝑔 = 𝑖𝑑$ en 𝑔 ∘ 𝑓 = 𝑖𝑑#
Dat betekent 𝑓A𝑔(𝑏)B = 𝑏, ∀𝑏 ∈ 𝐵 en 𝑔A𝑓(𝑎)B = 𝑎, ∀𝑎 ∈ 𝐴
Als een functie inverteerbaar is, dan is de inverse uniek
Injectieve functie
𝑓: 𝐴 → 𝐵 is injectief als voor " x1, x2 Î A zodat x1 ¹ x2 Þ f(x1) ¹ f(x2)
Û f is injectief als voor " x1, x2 Î A zodat f(x1) = f(x2) Þ x1 = x2
Surjectieve functie
𝑓: 𝐴 → 𝐵 is surjectief als " y Î B, $ x Î A zodat f(x) = y
Bijectieve functie
f is bijectief als het injectief én surjectief is
Bijectieve en inverteerbare functie
𝑓: 𝐴 → 𝐵, dan is f inverteerbaar Û f is bijectief
Monotone functie
𝑓: 𝐴 → 𝐵 is strikt stijgend als voor elke 𝑥% , 𝑥& ∈ 𝐴 𝑚𝑒𝑡 𝑥% < 𝑥& geldt dat 𝑓(𝑥% ) < 𝑓(𝑥& )
𝑓: 𝐴 → 𝐵 is strikt dalend als voor elke 𝑥% , 𝑥& ∈ 𝐴 𝑚𝑒𝑡 𝑥% < 𝑥& geldt dat 𝑓(𝑥% ) > 𝑓(𝑥& )
𝑓 is strikt monotoon als het strikt stijgend of strikt dalend is
Symmetrische functie
f is even als 𝑓(𝑥) = 𝑓(−𝑥) voor alle 𝑥 ∈ 𝐴
f is oneven als −𝑓(𝑥) = 𝑓(−𝑥) voor alle 𝑥 ∈ 𝐴
Strikt monotoon en injectief
Als f strikt monotoon is, dan is f injectief
Definitie limiet
𝑓: 𝐴 → 𝐵 met 𝐴 ∈ ℝ open en 𝐵 ∈ ℝ, dan lim 𝑓(𝑥) = 𝐿 als voor elke 𝜀 > 0, er een 𝛿 > 0
"→(
bestaat zodat voor elke 𝑥 ∈ 𝐴, als 0 < |𝑥 − 𝑎| < 𝛿, impliceert dat |𝑓(𝑥) − 𝐿| < 𝜀
Limiet bij oneindigheid
𝑓: 𝐴 → 𝐵 met 𝐴 ∈ ℝ en 𝐵 ∈ ℝ, dan lim 𝑓(𝑥) = 𝐿 als voor elke 𝜀 > 0, er een M > 0
"→)
bestaat, zodat x > M impliceert dat |𝑓(𝑥) − 𝐿| < 𝜀

, Oneindig limiet
𝑓: 𝐴 → 𝐵 met 𝐴 ∈ ℝ open en 𝐵 ∈ ℝ, dan lim 𝑓(𝑥) = ∞ als voor elke 𝑀 > 0, er een 𝛿 > 0
"→(
bestaat, zodat 0 < |𝑥 − 𝑎| < 𝛿 impliceert dat 𝑓(𝑥) > 𝑀
Somregel limieten
f en g 2 functies van A naar B, als lim 𝑓(𝑥) = 𝐿 en lim 𝑔(𝑥) = 𝑀 dan
"→( "→(
lim (𝑓(𝑥) + 𝑔(𝑥)) = 𝐿 + 𝑀
"→(
Limietregels
Als lim 𝑓(𝑥) = 𝐿 en lim 𝑔(𝑥) = 𝑀 dan
"→( "→(
- lim (𝑓(𝑥) − 𝑔(𝑥)) = 𝐿 − 𝑀
"→(
- lim (𝑐 ∗ 𝑓(𝑥)) = 𝑐 ∗ 𝐿 voor elke 𝑐 ∈ ℝ
"→(
- lim (𝑓(𝑥) ∗ 𝑔(𝑥)) = 𝐿 ∗ 𝑀
"→(
*(") .
- lim = / als 𝑀 ≠ 0
"→( -(")
Limiet ongelijkheid
f en g 2 functies van A naar B, neem aan dat 𝑓(𝑥) ≤ 𝑔(𝑥) voor alle 𝑥 ∈ 𝐴 en dat
lim 𝑓(𝑥) = 𝐿 en lim 𝑔(𝑥) = 𝑀, dan 𝐿 ≤ 𝑀
"→( "→(
Insluitstelling (squeeze theorem)
f, g en h functies van A naar B, neem aan dat 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) voor alle 𝑥 ∈ 𝐴 en dat
lim 𝑓(𝑥) = 𝐿 en lim ℎ(𝑥) = 𝐿, dan lim 𝑔(𝑥) = 𝐿
"→( "→( "→(
Continuïteit
Een functie f is continu op een punt 𝑎 ∈ 𝐴 als lim 𝑓(𝑥) = 𝑓(𝑎)
"→(
Een functie is continu als het continu is op elk punt
Discontinuïteit
Als een functie niet continu is, dan is het 1 van de 3 vormen van discontinuïteit:
- Ophefbare discontinuïteit (gat in de grafiek)
- Essentiële discontinuïteit (oneindig)
- Sprong discontinuïteit (sprong van een punt naar een ander punt)
Regels continuïteit
Als f en g continu zijn, dan zijn f + g, f * g, c * f en f ◦ g ook continu, is f / g continu op x als
𝑔(𝑥) ≠ 0, en als f inverteerbaar is, dan is 𝑓 0% continu
De functies 𝑥 ! , 𝑎 " , sin(𝑥) en cos (𝑥) zijn continu op hun domein
Limieten en functiesymbolen verwisseld
Als h continu is op b en lim 𝑘(𝑥) = 𝑏, dan lim ℎA𝑘(𝑥)B = ℎ \lim 𝑘(𝑥)] = ℎ(𝑏)
"→( "→( "→(
Tussenwaarde stelling
Als f : A à B continu is op [𝑎, 𝑏], 𝑎, 𝑏 ∈ 𝐴 en 𝑓(𝑎) ≠ 𝑓(𝑏), dan ∀𝑁 zodat 𝑓(𝑎) < 𝑁 < 𝑓(𝑏)
of 𝑓(𝑏) < 𝑁 < 𝑓(𝑎), ∃𝑐 ∈ (𝑎, 𝑏) zodat 𝑓(𝑐) = 𝑁

Week 2
Afgeleide van een functie
*(")0*(()
𝑓: 𝐴 → 𝐵, dan is de functie differentieerbaar op 𝑎 ∈ 𝐴 als lim "0( bestaat
"→(
In dat geval is de afgeleide van f de limiet en is 𝑓 1 (𝑎)
f is differentieerbaar als f op elke 𝑎 ∈ 𝐴 differentieerbaar is
*((42)0*(()
De afgeleide kan ook verkregen worden met lim 2
(x = a + h)
2→3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper LeonVerweij. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 60434 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99
  • (0)
  Kopen