100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Combinatorisch Optimaliseren (FEB22002) €6,99
In winkelwagen

Samenvatting

Samenvatting Combinatorisch Optimaliseren (FEB22002)

 0 keer verkocht

Uitgebreide samenvatting van Combinatorisch Optimaliseren (econometrie EUR)

Voorbeeld 2 van de 12  pagina's

  • 7 september 2022
  • 12
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
LeonVerweij
Week 1
Sets notation
ℕ = {0, 1, 2, 3 … }, ℤ! = {1, 2, 3, … }, ℤ = {… , −1, 0, 1, … } and 𝔹 = {0, 1}
Binary linear programming problem
Needed if the decision variables are of the yes/no type
max ∑#"$% 𝑐" 𝑥"
𝑠. 𝑡. ∑#"$% 𝑎&" 𝑥" ≤ 𝑏& 1≤𝑖≤𝑚
𝑥" ∈ 𝔹 1≤𝑗≤𝑛
matrix notation: max{𝒄 𝒙: 𝐴𝒙 ≤ 𝒃, 𝒙 ∈ 𝔹# }
'

Integer linear programming problems
Needed if the decision variables are of the discrete type
max ∑#"$% 𝑐" 𝑥"
𝑠. 𝑡. ∑#"$% 𝑎&" 𝑥" ≤ 𝑏& 1≤𝑖≤𝑚
𝑥" ∈ ℕ 1≤𝑗≤𝑛
matrix notation: max{𝒄 𝒙: 𝐴𝒙 ≤ 𝒃, 𝒙 ∈ ℕ# }
'

Mixed integer linear programming problems
Needed if some of the decision variables are discrete or binary valued and some continuous
max ∑#"$% 𝑐" 𝑥" + ∑)($% 𝑑( 𝑦(
𝑠. 𝑡. ∑#"$% 𝑎&" 𝑥" + ∑)($% 𝑐&( 𝑦( ≤ 𝑏& 1≤𝑖≤𝑚
𝑥" ≥ 0 1≤𝑗≤𝑛
𝑦( ∈ ℕ 1≤𝑘≤𝑝
matrix notation: max 𝒄 𝒙 + 𝒅 𝒚: 𝐴𝒙 + 𝐶𝒚 ≤ 𝒃, 𝒙 ≥ 𝟎, 𝒚 ∈ ℕ) }
{ ' '

Linear assignment problem
𝑛 tasks and 𝑛 persons, each person 1 task, 𝑐&" cost of executing task 𝑗 by person 𝑖, 𝑥&" = 1 if
person 𝑖 executes task 𝑗, minimize costs. The formulation is:
min ∑#&$% ∑#"$% 𝑐&" 𝑥&"
𝑠. 𝑡. ∑#"$% 𝑥&" = 1 1≤𝑖≤𝑛
#
∑&$% 𝑥&" = 1 1≤𝑗≤𝑛
𝑥&" ∈ 𝔹 1 ≤ 𝑖, 𝑗 ≤ 𝑛
Knapsack problem
𝑛 items, 𝑎" volume of item 𝑗, 𝑏 capacity of knapsack, 𝑐" utility of item 𝑗, 𝑥" = 1 if item 𝑗 is
selected, maximize utility. The formulation is:
max ∑#"$% 𝑐" 𝑥"
𝑠. 𝑡. ∑#"$% 𝑎" 𝑥" ≤ 𝑏
𝑥" ∈ 𝔹 1≤𝑗≤𝑛
Set covering problem
𝑁 = {1, … , 𝑛} set of routes, 𝑚 customers, 𝑐" cost of route 𝑗, 𝑥" = 1 if route 𝑗 is selected,
𝑎&" = 1 if customer 𝑖 is on route 𝑗, minimize costs. The formulation is:
min ∑#&$% 𝑐" 𝑥"
𝑠. 𝑡. ∑#"$% 𝑎&" 𝑥" ≥ 1 1≤𝑖≤𝑚
𝑥" ∈ 𝔹 1≤𝑗≤𝑛
Traveling salesman problem
𝑛 cities, 𝑐&" distance between city 𝑖 and city 𝑗, 𝑥&" = 1 if directed arc (𝑖, 𝑗) is a part of route,
minimize costs. The formulation is:
min ∑#&$% ∑#"$% 𝑐&" 𝑥&"
𝑠. 𝑡. ∑#"$% 𝑥&" = 1 1≤𝑖≤𝑛
#
∑&$% 𝑥&" = 1 1≤𝑗≤𝑛
∑&∈+ ∑"∈+ ! 𝑥&" ≥ 1 𝑆 ⊂ 𝑁, 𝑆 ≠ ∅

, 𝑥&" ∈ 𝔹 1 ≤ 𝑖, 𝑗 ≤ 𝑛
Uncapacitated facility location problem
𝑚 customers, 𝑛 possible locations for plants, 𝑐&" cost of delivering from location 𝑗 to
customer 𝑖, 𝑓" cost of plant located at 𝑗, 𝑦" = 1 if a plant is constructed of site 𝑗, 𝑥&" fraction
of demand of customer 𝑖 supplied by plant 𝑗, minimize costs. The formulation is:
min ∑#&$% ∑#"$% 𝑐&" 𝑥&" + ∑#"$% 𝑓" 𝑦"
𝑠. 𝑡. ∑#"$% 𝑥&" = 1 1≤𝑖≤𝑚
,
∑&$% 𝑥&" ≤ 𝑚𝑦" 1≤𝑗≤𝑛
𝑥&" ≥ 0 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
𝑦" ∈ 𝔹 1≤𝑗≤𝑛
Uncapacitated lot-sizing problem
𝑛 periods, 𝑑- demand in period 𝑡, 𝑝- unit production costs in period 𝑡, ℎ- unit inventory
costs in period 𝑡, 𝑓- setup productions costs in period 𝑡, 𝑦- if production occurs in period 𝑡,
𝑥- number of produced items in period 𝑡, 𝑠- inventory level at the end of period 𝑡, minimize
costs. The formulation is:
min ∑#-$%(𝑝- 𝑥- + ℎ- 𝑠- + 𝑓- 𝑦- )
𝑠. 𝑡. 𝑠-.% + 𝑥- = 𝑑- + 𝑠- 1≤𝑡≤𝑛
𝑥- ≤ 𝑀𝑦- 1≤𝑡≤𝑛
𝑥- , 𝑠- ≥ 0 1≤𝑡≤𝑛
𝑦- ∈ 𝔹 1≤𝑡≤𝑛
𝑠/ = 0
Either-or restrictions
Take decision vector 𝒙 ∈ ℝ# satisfying 𝟎 ≤ 𝒙 ≤ 𝒖 with restriction 𝒂%' 𝒙 ≤ 𝑏% ∨ 𝒂'0 𝒙 ≤ 𝑏0
The feasible region is {𝟎 ≤ 𝒙 ≤ 𝒖: 𝒂%' 𝒙 ≤ 𝑏% } ∪ {𝟎 ≤ 𝒙 ≤ 𝒖: 𝒂'0 𝒙 ≤ 𝑏0 }
For the linear representation procedure, compute the constant 𝑀& , 𝑖 = 1, 2 satisfying
𝑀& ≥ max{𝒂'& 𝒙 − 𝑏& : 𝟎 ≤ 𝒙 ≤ 𝒖} for the following system with decision variables 𝒙, 𝑧% , 𝑧0
𝟎≤𝒙≤𝒖
𝒂%' 𝒙 − 𝑏% ≤ 𝑀% (1 − 𝑧% )
𝒂%' 𝒙 − 𝑏0 ≤ 𝑀0 (1 − 𝑧0 )
𝑧% + 𝑧0 = 1
𝑧& ∈ 𝔹 𝑖 = 1, 2
If 𝑧& = 1, then constraint 𝒂'& 𝒙 ≤ 𝑏& is satisfied
If-then restriction
Take the problem with following restrictions: 𝟎 ≤ 𝒙 ≤ 𝒖 and if 𝒂%' 𝒙 > 𝑏% , then 𝒂'0 𝒙 ≤ 𝑏0
This is the same as the restrictions 𝟎 ≤ 𝒙 ≤ 𝒖 and ¬𝒂%' 𝒙 > 𝑏% ∨ 𝒂'0 𝒙 ≤ 𝑏0
And this is the same as the restrictions 𝟎 ≤ 𝒙 ≤ 𝒖 and 𝒂%' 𝒙 ≤ 𝑏% ∨ 𝒂'0 𝒙 ≤ 𝑏0

Week 2
Polyhedra definition
A set 𝑃 ⊆ ℝ# is called a polyhedron, if there exists some 𝑚 × 𝑛 matrix 𝐴 and some 𝒃 ∈ ℝ#
such that 𝑃 ≔ {𝒙 ∈ ℝ# : 𝐴𝒙 ≤ 𝒃}
Formulations
By the definition of a polyhedron, it follows that any integer or binary linear programming
problem can be written as max{𝒄' 𝒙: 𝒙 ∈ 𝑃 ∩ ℤ# }, with 𝑃 a polyhedron. Also, every mixed
integer linear program can be written as max{𝒄' 𝒙: 𝒙 ∈ 𝑃 ∩ (ℝ) × ℤ# )}.
A polyhedron 𝑃 ⊆ ℝ#!) is called a formulation for a set 𝑋 ⊆ ℝ) × ℤ# if and only if
𝑋 = 𝑃 ∩ (ℝ) × ℤ# ). A problem can have different formulations

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper LeonVerweij. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99
  • (0)
In winkelwagen
Toegevoegd