100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Advanced Econometrics (FEB23016)

Beoordeling
-
Verkocht
1
Pagina's
14
Geüpload op
09-09-2022
Geschreven in
2021/2022

Uitgebreide samenvatting van Advanced Econometrics (econometrie EUR)










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 september 2022
Aantal pagina's
14
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

Topic 1: System of Equations
Seemingly unrelated regressions (SUR)
𝑦!" = 𝑥!" 𝛽" + 𝑢!" ,

𝑦!# = 𝑥!# 𝛽# + 𝑢!# ,
for 𝑖 = 1, … , 𝑁, where, for 𝑔 = 1, … , 𝐺, 𝑥!$ = 0𝑥$",! , 𝑥$&,! , … , 𝑥$'! ,! 1 is 1 × 𝐾$ , and 𝛽$ is
𝐾$ × 1. 𝐾$ is the number of regressors in 𝑔-th equation and 𝑥!$ can be the same or different
over equations. If we define 𝑌! = (𝑦!" , … , 𝑦!# )( , 𝑢! = (𝑢!" , … , 𝑢!# )( , 𝛽 = (𝛽" , … , 𝛽# )′ and
𝑥!" ⋯ 0
𝑋! = 9 ⋮ ⋱ ⋮ =, then the system of equations can be written as 𝑌! = 𝑋! 𝛽 + 𝑢!
0 ⋯ 𝑥!#
System OLS estimator
The system OLS estimator is 𝛽>)*+) = (𝑁 ," ∑- ( ,"
!." 𝑋! 𝑋! ) (𝑁
," ∑- (
!." 𝑋! 𝑌! ). The system OLS
estimator is consistent for large 𝑁 and fixed 𝐺 if two conditions hold:
- SOLS.A1: 𝐸(𝑋!( 𝑢! ) = 0
- SOLS.A2: 𝐸(𝑋!( 𝑋! ) is nonsingular.
𝐸(𝑋!( 𝑢! ) = 0 ⟺ 𝐸B𝑥!$ (
𝑢!$ C = 0 for 𝑔 = 1, … , 𝐺. In each equation, errors and regressors are
uncorrelated. But errors in one equation, 𝑢!$ , can be correlated with regressors in another
equation 𝑥!/ for ℎ ≠ 𝑔.
𝐸(𝑋!( 𝑋! ) is nonsingular ⟺ 𝐸B𝑥!$ (
𝑥!$ C is nonsingular for all 𝑔. So, there is no multi-collinearity
in each equation
Normality and SOLS
Under assumptions SOLS.A1 and SOLS.A2, we have √𝑁B𝛽>)*+) − 𝛽C ∼ 𝑁(0, Σ), where
0
Σ = [𝐸(𝑋!( 𝑋! )]," 𝐸(𝑋!( 𝑢! 𝑢!( 𝑋! )[𝐸(𝑋!( 𝑋! )]," . The asymptotic variance is 𝑣𝑎𝑟B𝛽>)*+) C = -.
Consistent estimator of the variance is 𝑉P)*+) = (∑- ( ," -
!." 𝑋! 𝑋! ) (∑!." 𝑋! 𝑢
(
Q ! 𝑢Q!( 𝑋! )(∑- ( ,"
!." 𝑋! 𝑋! ) .
It is a robust variance estimator in the sense that:
- The unconditional variance of errors, 𝐸(𝑢! 𝑢!( ), is entirely unrestricted, so it allows cross
equation correlation as well as different error variances in each equation
- The conditional variance of errors, 𝐸(𝑢! 𝑢!( |𝑋! ), can depend on 𝑋! in an arbitrary unknown
fashion
Hypothesis testing
- Single coefficient 𝐻1 : 𝛽$2 = 0. 𝑡 = 𝛽>$2,)*+) /𝑠𝑒B𝛽>$2,)*+) C ∼ 𝑁(0,1), where 𝑠𝑒B𝛽>$2,)*+) C
is the square root of 𝑔𝑘-th diagonal element of 𝑉P)*+)
( ,"
- Multiple coefficients 𝐻1 : 𝑅𝛽 = 𝑟. Wald = B𝑅𝛽>)*+) − 𝑟C B𝑅𝑉P)*+) 𝑅( C B𝑅𝛽>)*+) − 𝑟C ∼
𝜒 & (𝑄), where 𝑄 is the number of restrictions
System OLS vs. equation-by-equation OLS
SOLS estimation of a SUR model without restrictions on parameters 𝛽$ is equivalent to OLS
equation by equation. Equation-by-equation OLS estimator cannot incorporate cross-
equation restrictions, while this is possible for SOLS
Systems with cross equation restrictions
If a regressor from different dependent variables should have the same parameter, this can
be done in two ways:
- Write the regressor and coefficient matrix in the usual way, construct the restriction
matrix 𝑅 such that 𝑅𝛽 = 0. Then compute the restricted estimator of 𝛽 as 𝛽a)*+) =
𝛽>)*+) − (𝑋 ( 𝑋)," 𝑅( (𝑅(𝑋 ( 𝑋)," 𝑅( )," B𝑅𝛽>)*+) C, where 𝛽>)*+) is the unrestricted estimator
- Write the regressor for the different dependent variables in the same column but in a
different row. The coefficient vector then needs one less coefficient. 𝛽>)*+) can be
computed using the standard formula

, Kronecker product ⨂
The Kronecker product is an operation on two matrices of arbitrary size resulting in a block
𝑎"" ⋯ 𝑎"3 𝑎"" 𝐵 ⋯ 𝑎"3 𝐵
matrix. If 𝐴 = 9 ⋮ ⋱ ⋮ =, then 𝐴 ⨂ 𝐵 = 9 ⋮ ⋱ ⋮ =
𝑎4" ⋯ 𝑥43 𝑎4" 𝐵 ⋯ 𝑥43 𝐵
System GLS estimator
For SGLS we need other assumptions:
- SGLS.A1: 𝐸(𝑋! ⨂ 𝑢! ) = 0. This means that each element of 𝑢! is uncorrelated with each
element of 𝑋! , i.e. errors and regressors are uncorrelated within and across equations
- SGLS.A2: Ω ≡ 𝐸(𝑢! 𝑢!( ) is positive definite (variance positive) and 𝐸(𝑋!( Ω," 𝑋! ) is
nonsingular (not satisfied if ∑#$." 𝑦!$ = constant)
If SGLS.A1 and SGLS.A2 hold, we can use SGLS. It can be obtained similarly as in the single
equation model: 𝛽>)#+) = (𝑁 ," ∑- ( ,"
!." 𝑋! Ω 𝑋! ) (𝑁
," ," ∑- ( ,"
!." 𝑋! Ω 𝑌! ), which is consistent
Normality and SGLS
Under assumptions SGLS.A1 and SGLS.A2, we have √𝑁B𝛽>)#+) − 𝛽C ∼ 𝑁(0, Σ)#+) ), where
Σ)#+) = [𝐸(𝑋!( Ω," 𝑋! )]," 𝐸(𝑋!( Ω," 𝑢! 𝑢!( Ω," 𝑋! )[𝐸(𝑋!( Ω," 𝑋! )]," . The asymptotic variance of
0
𝛽>)#+) is 𝑣𝑎𝑟B𝛽>)#+) C = "#$"-
Feasible GLS
SGLS requires Ω, which is in most applications not possible. Hence, we use FGLS estimation.
In FGLS we replace the unknown matrix Ω with a consistent estimator.
1. Apply SOLS estimation, and obtain the SOLS residuals 𝑢Q!
2. Consistently estimate Ω by Ω l = 𝑁 ," ∑- !." 𝑢Q ! 𝑢Q!(
,"
3. Given Ω l , the FGLS estimator of 𝛽 is 𝛽>5#+) = B𝑁 ," ∑- ( l ,"
!." 𝑋! Ω 𝑋! C B𝑁
," ∑- ( l ,"
!." 𝑋! Ω 𝑌! C
FGLS vs. SGLS
FGLS and SGLS are asymptotic equivalent. This implicates that:
- FGLS estimator is consistent as SGLS
- FGLS estimator follows normal distribution asymptotically
- In finite sample, especially with small sample size 𝑁, the actual distribution of FGLS is likely
to be non-normal
( l ," ," ( l ," ∗ ∗ ( l ," ( l ," ,"
𝑉P5#+) = B∑- -
!." 𝑋! Ω 𝑋! C B∑!." 𝑋! Ω 𝑢 Q ! 𝑢Q! Ω 𝑋! CB∑- !." 𝑋! Ω 𝑋! C is a consistent (and
> ∗ >
robust) estimator of 𝑣𝑎𝑟B𝛽5#+) C, where 𝑢Q! = 𝑌! − 𝑋! 𝛽5#+) is de FGLS residual
FGLS vs. SOLS
FGLS is asymptotically more efficient than SOLS if one additional assumption holds:
- SGLS.A3: 𝐸(𝑋!( Ω," 𝑢! 𝑢!( Ω," 𝑋! ) = 𝐸(𝑋!( Ω," 𝑋! ) (errors homoskedastic in each equation)
If the errors are heteroskedastic within each equation, e.g. 𝑣𝑎𝑟(𝑢!" ) = 0.3𝑥",! , then SGLS.A3
fails. Under SGLS.A1 – SGLS.A3, 𝑣𝑎𝑟B𝛽>5#+) C = (∑- ( ,"
!." 𝑋! Ω 𝑋! )
,"
is the asymptotic variance
> > >
of 𝛽5#+) . Since 𝑣𝑎𝑟B𝛽)*+) C − 𝑣𝑎𝑟B𝛽5#+) C is always positive semi-definite, FGLS is more
efficient than SOLS. It is not robust since it relies on SGLS.A3 (the robust variance allows
variance of 𝑢! to be any format). Hypothesis testing using FGLS are similar to SOLS. Choose
the appropriate variance estimator depending on the validity of SGLS.A3
FGLS vs. SOLS: summarized comparison
Two cases SOLS and FGLS are equivalent for SUR
- Ω l is a diagonal matrix (zero correlation between errors in different equations -> equations
are actually unrelated). In applications Ω l would not be diagonal unless we impose a
diagonal structure
- 𝑥!" = 𝑥!& = ⋯ = 𝑥!# for all 𝑖, that is, the same regressors show up in each equation (for
all observations)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
7 jaar
Aantal volgers
19
Documenten
28
Laatst verkocht
4 maanden geleden

2,0

1 beoordelingen

5
0
4
0
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen