1. Sequential Learning & Multi-Armed Bandit
Problem
Sequential Decision-making Problem
Bandits
What action to take next based on our information → how to leverage our experience in an
optimal way.
Each time the learner pulls an arm it chooses a distribution to get a reward from.
▶ Which one is better?
● Booking: choosing between two layouts.
● Medical: choosing between two medical treatments.
▶ Assumption: all the customers are the same, the only difference is in the arms.
Regret
Measure bandit performance through regret.
*
𝑅𝑛(π) = 𝑛µ − 𝐸[𝑆𝑛]
π: policy/interaction.
*
µ = max µ𝑎: the best arm/interaction.
𝑎∈α
𝑛
𝑆𝑛 = ∑ 𝑋𝑡: total reward.
𝑡=1
The faster the line converges to the max the better our arm/action.
1
, ▶ Regret is the relative performance to the crack → some benchmark considering the
reward.
▶ Assumptions:
● Regret is non-negative → impossible to outperform the best solution.
● Impossible to get regret 0 (in real life).
● Cannot use supervised learning → the outcome if another action was chosen is
unobserved.
▶ Properties:
1. Non-negative: 𝑅 (π) ≥ 0 for all policies π.
𝑛
2. Best-policy (sufficient): the policy choosing 𝐴 ∈ arg max 𝑥 for all rounds 𝑡
𝑡 𝑎∈𝐴 𝑡𝑎
satisfies 𝑅 (π) = 0.
𝑛
3. Best-policy (necessary): if 𝑅 (π) = 0 for some policy π, then
𝑛
ℙ(𝐴𝑡 = arg max 𝑥𝑡𝑎) = 1 for all rounds 𝑡.
𝑎∈𝐴
How Do We Know Regret
1. Analysis: sometimes possible to compute, analytically, the asymptotic regret of a
policy.
○ Reveals the true performance of the policy.
○ Only possible for fairly restricted environments.
○ Often only possible to bound the asymptotic regret.
2. Simulation: create a program that simulates the environment and runs the policy
against the environment (repeatedly).
○ Comparatively easy to carry out.
○ Still, many restrictions on the environment.
○ Simulation != proof, can get an incorrect reward.
'
3. Offline Evaluation: collect data from the environment using some logging policy π →
evaluate policy π using data collected.
○ Relatively easy to carry out if data is available.
○ Provides evaluation for the actual environment (in theory).
○ Necessity to understand to logging policy.
○ Collecting 𝐷 might be expensive.
○ Effective sample size is often huge.
4. Online Evaluation: evaluate the policy in a real-life environment.
○ Deploy policy π in the wild.
○ Often challenging engineering task.
○ Expensive → all errors affect actual business.
○ If done well, it allows for future offline analysis.
Explore-First (Explore-Then-Commit) (Non-Adaptive)
1. Explore: play each arm 𝑚 rounds.
^
2. Find the arm with the highest average reward µ.
3. Exploit: play arm 𝑎 in all remaining rounds.
2
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper tomdewildt. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.