100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Microbial Metabalism (BB090) Summary of all lectures €5,09   In winkelwagen

Samenvatting

Microbial Metabalism (BB090) Summary of all lectures

 14 keer bekeken  0 keer verkocht

All the lectures of the course Microbial Metabalism (BB090) given in the 2nd year of the Bachlor Biology. It is mainly picutes and bullet point. Great for people who struggle with large chunks of text.

Voorbeeld 4 van de 53  pagina's

  • 23 september 2022
  • 53
  • 2019/2020
  • Samenvatting
Alle documenten voor dit vak (4)
avatar-seller
romykiffen
Lecture 2 BioEnergetics
Anabolism​ → How the cell build cell components
Catabolism​ → How the cell converts compounds into
energy

Metabolism​ - The sum total of all of the chemical
reactions that occur in a cell
● Catabolic reactions (catabolism)
○ Energy-releasing metabolic reactions
○ “Energy metabolism”
● Anabolic reactions (anabolism)
○ Energy-consuming biosynthetic
reactions
○ “Biosynthesis”

Making ATP (energy) is the ultimate goal for all microorganisms.
● Energy required for making ATP comes from chemical reactions


1st law of thermodynamics
Energy can be transformed from one form to
another but not been generated or destroyed


Inorganic chemical metabolism is not found in
eukaryotes

Principles of Bioenergetics
● In any chemical reaction, energy is either
required or released (burn / make).
● Free energy (G): energy released that is
available to do work
● The change in free energy during a reaction is
referred to as ΔG0 ′ (standard conditions)
○ Exergonic:​ Reactions with –ΔG0 ′ release free energy and can eventually be
used to make ATP.
○ Endergonic:​ Reactions with +ΔG0 ′ require energy so ATP would be required
to make them work.

,Coupling of endergonic and exergonic reactions




If ΔG0 ′ = 0, the reaction is in equilibrium and nothing happens
● Free-energy calculations do not provide information on reaction rates.
● The reaction rate results from a combination of thermodynamics (G0 ’) and kinetics
(velocity of catalysis)

Catalysis and Enzymes
Catalyst
● Is not being consumed in the reaction
● Lowers the activation energy of a
reaction
● Increases reaction rate
● Does not affect energetics or
equilibrium of a reaction

Enzymes
● Biological catalysts
● Typically proteins (some RNAs)
● Highly specific
● Generally larger than substrate
● Typically rely on weak bonds
○ Examples: hydrogen bonds, van der Waals forces, hydrophobic interactions
● Active site: region of enzyme that binds substrate

Enzyme nomenclature
EC 1. Oxidoreductases
To this class belong all enzymes catalysing oxido-reductions. The substrate oxidized is
regarded as electron donor. Common name is 'dehydrogenase', wherever this is possible; as
an alternative, 'acceptor reductase' can be used.
NADH: ubiquinone oxidoreductase, i.e. NADH dehydrogenase in complex I

,EC 2. Transferases
Transferases are enzymes transferring a group, for example, the methyl group from one
compound (generally regarded as donor) to another compound (generally regarded as
acceptor). The classification is based on the scheme 'donor: acceptor group transferase'.
e.g. CH3 -H4MPT: CoM methyltransferase

EC 3. Hydrolases
These enzymes catalyse the hydrolysis of various bonds.
e.g. peptidase

EC 4. Lyases
Lyases are enzymes cleaving C-C, C-O, C-N and other bonds by other means than by
hydrolysis or oxidation. They differ from other enzymes in that two substrates are involved in
one reaction direction, but only one in the other direction.
e.g. fructose bisphosphate aldolase

EC 5. Isomerases
These enzymes catalyse changes within one molecule.
e.g. triosephosphate isomerase

EC 6. Ligases
Ligases are enzymes that catalyse the joining of two molecules with concomitant hydrolysis
of the diphosphate bond in ATP or a similar triphosphate.
e.g. DNA ligase

Cofactor used in enzyme catalysis




Enzymes therefore make use of cofactors:
● Tighly/covalently bound: prosthetic groups, e.g. Fe-S centers
● Non-covalently bound/ interaction with different enzymes: coenzyme, e.g. NADH)

, Electron donors and acceptors




The standard potential is indicated by E0’(E zero prime)
0 = standard conditions
= 1 mol/L substrate and 1 mol/L product
= 1 atm in the case of gasses
‘ = biological conditions
= pH 7.0, 25 deg centigrade (room temp)

Learning Goals
● Understand and distinguish different types of microbial metabolism and balance
microbiologically relevant redox reactions
● Understand the (bio)chemical principles of microbial metabolism

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper romykiffen. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,09. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75632 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,09
  • (0)
  Kopen