Alle hoorcolleges die bij het tweede deel van de cursus genomica gegeven worden zijn samengevat in dit document. Inclusief plaatjes, voorbeeld vragen van het college en formules.
Recap: -omics (omics: het sequencen van alles van iets) (meta: kijken naar alle organismen ipv 1)
- genomics: sequence all of the DNA of one organism
- transcriptomics: sequence all of the mRNA in an organism/tissue/cell
- proteomics: sequence all of the proteins in an organism/tissue/cell
- metagenomics: sequence the DNA of all organisms in a sample
- metatranscriptomics: sequence the mRNA of all organisms in a sample
- metaproteomics: sequence the proteins of all organisms in a sample
Hoe werkt metagenomics:
- de pakt een sample (bijv. koraal, zeewater, stuk darm, etc)
- filteren zodat je dingen kwijtraakt waar je niet naar wilt kijken
- dan hou je alleen de micro-organismen over
The biology behind the omics revolution
- omics solves a major problem in the science: biases
- people are mostly interested in: their diseases, their
food, themselves
- this causes biases in our general understanding of
biology, and biases in our databases. For example: most
studied bacteria are associated with humans
Data and the bioinformatician
- bioinformaticians use data in two different ways:
- 1: question first / top down: given a biological question, a good bioinformatician will immediately
think about which datasets could be used to answer it
- 2: data fist/ bottom up: given a dataset, a good bioinformatician will immediately think about which
biological hypothesis it could help to test
Bioinformatics
- the study of informatic process in biotic systems
Bioinformatic data analysis
- using computational methods to analyze biological data
What to do with tons of different sequences?
- searching a database: we want to find a query sequence in the database
- but why? → if two sequences are similar we assume that they are related or have a common
ancestor
- show database of 300k genomes and illustrate how we want to find the best hit of a given query
- we have to break down the search because of possible mutations
,k-mer searches
- sequences can be divided into shorter subsequences or k-mers (k-mers consist of k nucleotides or
amino acids)
- we can make an index of all k-mers that occur in the database sequences
- if we split a query into k-mers of the same length, we can rapidly identify all the database
sequences containing them
- but: we limit ourselves to exact matches
natural sequence divergence
- if we align metagenomics sequencing reads to a reference genome, we can distinguish multiple
distinct SAR86 strains
- the sequences at the top (~97% identity)
belong to a strain that is closely related to the
reference genome
- the sequences below (~60 – 80% identity) are
more distantly related strains
pairwise sequence alignments
- given two sequences: seqX = X1X2…XM and seqY = Y1Y2….YN
an alignment is an assignment of gaps to positions 0, …, M in x, and to positions 0,…,N in seqY, so as
to line up each letter in one sequence with either a letter of a gap in the other sequence
- je zet de sequences boven elkaar zodat er zo veel mogelijk overeenkomsten zijn
searching a database
- could we make sequence alignments between the query and every database sequence? →
theoratically, yes but it takes a long time
best of both worlds
- using an k-mer search (= index search) will be very fast… but limits you to the exact matches
- making all possible pairwise alignments will let you find distantly related sequences as well …. But it
would take a very long time
- the solution is to combine the best of both worlds: quickly find potential hit using exact k-mers
stored in an index and make pairwise alignment, but only for potential hits
basic local alignment search tool (BLAST)
- BLAST finds similar sequences at reasonable speed (10-50x faster than previous algorithms)
- terminology: query – sequence we search the database with. Hit or subject: similar sequence found
in the database
- BLAST is the most used bioinformatics program → more than 100.000 queries per day on the NCBI
BLAST server
- even faster algorithms are now available
the BLAST search algorithm
- 1: identifies all words (length W) in the query (default lengths: W = 3 for protein, W = 11 for DNA,
based on substitution scores)
- 2: quickly finds similar words in the database (similar words are defined by using the substitution
, matrix, the index quickly locates all potential hits seqs
- 3: extends seeds in both directions to find HSPs between query and hit (HSP: region that can be
aligned with a score above a certain threshold
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper charlottebruring. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.