100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary asdfaa

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
04-10-2022
Geschreven in
2022/2023

Summary of 6 pages for the course General Papers at AOC Groenhorst College (asdfas)










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
4 oktober 2022
Aantal pagina's
6
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Integrating the Probabilistic Model
BM25/BM25F into Lucene.

Joaquı́n Pérez-Iglesias1, José R. Pérez-Agüera2, Vı́ctor Fresno1 and
Yuval Z. Feinstein3
1
NLP&IR Group, Universidad Nacional de Educación a Distancia, Spain
arXiv:0911.5046v2 [cs.IR] 1 Dec 2009




2
University of North Carolina at Chapel Hill, USA
3
Answers Corporation, Jerusalem 91481, Israel
, , ,





Abstract. This document describes the BM25 and BM25F implemen-
tation using the Lucene Java Framework. The implementation described
here can be downloaded from [Pérez-Iglesias 08a]. Both models have
stood out at TREC by their performance and are considered as state-
of-the-art in the IR community. BM25 is applied to retrieval on plain
text documents, that is for documents that do not contain fields, while
BM25F is applied to documents with structure.



Introduction

Apache Lucene is a high-performance and full-featured text search engine library
written entirely in Java. It is a technology suitable for nearly any application
that requires full-text search. Lucene is scalable and offers high-performance
indexing, and has become one of the most used search engine libraries in both
academia and industry [Lucene 09].
Lucene ranking function, the core of any search engine applied to determine
how relevant a document is to a given query, is built on a combination of the
Vector Space Model (VSM) and the Boolean model of Information Retrieval.
The main idea behind Lucene approach is the more times a query term appears
in a document relative to the number of times the term appears in the whole
collection, the more relevant that document will be to the query [Lucene 09].
Lucene uses also the Boolean model to first narrow down the documents that
need to be scored based on the use of boolean logic in the query specification.
In this paper, the implementation of BM25 probabilistic model and its ex-
tension for semi-structured IR, BM25F, is described in detail.
One of the main Lucene’s constraints to be widely used by IR community is
the lack of different retrieval models implementations. Our goal with this work is
to offer to IR community a more advanced ranking model which can be compared
with other IR software, like Terrier, Lemur, CLAIRlib or Xapian.

, 1 Motivation

There exists previous implementations of alternative Information Retrieval Mod-
els for Lucene. The most representative case of that is the Language Model im-
plementation4 from Intelligent Systems Lab Amsterdam. Another example is
described at [Doron 07] where Lucene is compared with Juru system. In this
case Lucene document length normalization is changed in order to improve the
Lucene ranking function performance.
BM25 has been widely use by IR researchers and engineers to improve search
engine relevance, so from our point of view, a BM25/BM25F implementation for
Lucene becomes necessary to make Lucene more popular for IR community.


Included Models

The developed models are based in the information that can be found at [Robertson 07].
More specifically the implemented ranking functions are as next:


BM25
X occursdt
R(q, d) = ld
t∈q
k1 ((1 − b) + b avl d
) + occursdt

where occursdt is the term frequency of t in d; ld is the document d length; avld is
the document average length along the collection; k1 is a free parameter usually
chosen as 2 and b ∈ [0, 1] (usually 0.75). Assigning 0 to b is equivalent to avoid
the process of normalisation and therefore the document length will not affect
the final score. If b takes 1, we will be carrying out a full length normalisation.
The classical inverse document frequency is computed as next:

N − df (t) + 0.5
idf (t) = log
df (t) + 0.5

where N is the number of documents in the collection and df is the number of
documents where appears the term t.
A different version of this formula, as can be found at Wikipedia5 , multiplies
the obtained bm25 weight by the constant (k1 + 1) in order to normalize the
weight of terms with a frequency equals to 1 that occurs in documents with an
average length.


BM25F

First we obtain the accumulated weight of a term over all fields as next:
4
http://ilps.science.uva.nl/resources/lm-lucene
5
http://en.wikipedia.org/wiki/Probabilistic relevance model (BM25)
€6,79
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
afdsasdf

Maak kennis met de verkoper

Seller avatar
afdsasdf
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
3 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen