100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Extensive summary FDDA (VU) €7,49   In winkelwagen

Samenvatting

Extensive summary FDDA (VU)

 98 keer bekeken  12 keer verkocht

Extensive summary for FDDA at the Vrije Universiteit, covers all lectures and provides numerous, easily explained examples. Grade: 7.5

Voorbeeld 4 van de 97  pagina's

  • Nee
  • 1 tm 14
  • 19 oktober 2022
  • 97
  • 2022/2023
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (2)
avatar-seller
isabellaarnoldcrdenas
Week 1
Simple Linear Regression Model




- Suppose that Y is a linear function of another variable X, with unknown parameters
beta1 and beta 2.
- Suppose that we have a sample of 4 observations with X values (as shown)
- If the relationship were an exact one, the 4 observations would lie on the straight
line (and we would have no trouble with obtaining the estimates of beta1 and
beta2). But in practice, this does not happen à the observations lie around the
straight line. à hence the values of Y are different than the values (of Y) on the
straight line
à To allow for such divergence, we will write the regression model as 𝑌 = 𝛽! + 𝛽" 𝑋 +
𝑢 , where u is the disturbance term
o Why does the disturbance term exist?
1. Omission of explanatory variables
2. Aggregation of variables
3. Measurement error
4. Model & functional misspecification




à Each value of Y exists of a nonrandom component, 𝛽! + 𝛽" 𝑋, and a random component
u.

Estimating a linear regression model
- We now use 𝑌( = 𝛽)! + 𝛽)" 𝑋, where 𝛽)! is an estimate of 𝛽! and 𝛽)" is an estimate of
𝛽" .

, - The line is called the fitted model and the values of Y predicted by it are called the
fitted values of Y (the R points).




- The discrepancies of the actual and the fitted values of Y are known as the residuals
(𝑢*).

Difference between u and 𝑢*




- This figure shows the disturbance term, u (difference between nonrandom
component and the actual observation).

, - This figure shows the residual, 𝑢* (difference between actual and fitted values).

Least Squares Criterion
Minimize RSS (residual sum of squares), where
$

𝑅𝑆𝑆 = / 𝑢*#" = 𝑢*!" + ⋯ + 𝑢*$"
#%!
à Draw the fitted line so as to minimize the sum of the squares of the residuals (RSS). à
Least squares criterion
- The aim is to fit the regression line: draw the fitted line so as to minimize sum of the
squared of residuals, RSS
- A least squares analysis begins with a set of data points plotted on a graph.
Independent variables are plotted on the horizontal x-axis while dependent variables
are plotted on the vertical y-axis. The analyst uses the least squares formula to
determine the most accurate straight line that will explain the relationship between
an independent variable and a dependent variable.
- We take the squares of the residuals because otherwise we would get a perfect fit
(horizontal line) à the sum of the residuals would be zero. To prevent this, we
should cancel out the negative values à this can be done by taking the squares of
the residuals.

Deriving Linear Regression Coefficients
1$ = 𝑌$ − 3
Calculating the residual: 𝑢 𝑌$

, à The values of Y1 (4), Y2 (3), Y3 (5) en Y4 (8), you can read from the Y axis.
à The values of 3𝑌$ (b1 and b2) we are going to estimate
Use partial derivatives:




- In order to calculate b1 and b2, set the equations equal to 0.




à 8b1 + 20b2 – 40 = 20b1 + 60b2 – 114 = 0
B1 = -3.333b2 + 6.166
à fill this in in the b2 formula




- We could name these values 𝐵 3! OLS and 𝐵
3" OLS to emphasize that these are the
particular values that satisfy the OLS criterion.

Derivation of Linear regression coefficients – General case with n observations


𝑏1 = 𝑌7 − 𝑏" 𝑋7
∑(𝑋# − 𝑋7)(𝑌# − 𝑌7)
𝑏2 =
∑(𝑋# − 𝑋7)"

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper isabellaarnoldcrdenas. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 71184 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,49  12x  verkocht
  • (0)
  Kopen