100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Practical 1 - Omics €6,49
In winkelwagen

Case uitwerking

Practical 1 - Omics

 24 keer bekeken  0 keer verkocht

Case of 5 pages for the course EPI4925 Molecular and Genetic Epidemiology at UM (Practical 1 - Omics)

Voorbeeld 2 van de 5  pagina's

  • 4 november 2022
  • 5
  • 2021/2022
  • Case uitwerking
  • Matty weijenberg
  • 7-8
Alle documenten voor dit vak (4)
avatar-seller
zoeverschueren
Practical I – Biomarkers: from single markers to omics


QUESTIONS

1. What is the research question of the study by Chen et al, 2015? Does this study focus on
prediction or on understanding? Explain.

The aim of the study is to identify important metabolites to distinguish a normal metabolic state
from an abnormal obesity metabolome.
 Explore the differences between the MHO and MAO groups

The focus of the study is understanding, because they want to find metabolomes that identify
potential metabolic pathways that may regulate the different metabolic characteristics of obesity.

 Etiologic research
o Understand mechanisms
o Aim to establish causality

 But also prediction

2. Does this study examine a biomarker of exposure, susceptibility, or (intermediate) endpoint?
Explain.

The biomarker is an endpoint, because the biomarker reflect the type of obesity, namely
metabolically healthy obesity (MHO) or metabolic abnormal obesity (MAO) group. So with the use of
metabolites one distinguish MHO and MAO.

 Also an exposure and susceptibility marker

3. Are the metabolomics measurements performed targeted or untargeted? Explain the difference.
What are the advantages and disadvantages of both approaches?

Both a targeted and untargeted analysis was employed in this study.

Target measurement = used to estimate the importance of each metabolite within a specific
pathway.
- Hypothesis driven
- The metabolites you want to investigate are already identified (specific)
- Aim = absolute quantification of specific metabolites in biological samples
- Limited number of metabolites

Advantages:
- Used when you want to investigate a specific metabolite

Disadvantages:
- Require a priori knowledge of metabolites of interest
- Do not achieve global coverage

Untargeted measurement = quantify the global metabolic profile of a sample
- Hypothesis-generation

, Practical I – Biomarkers: from single markers to omics


- Collect and analyse all detectable metabolites in a sample
- You do not know the identification of the metabolites
- Compare differences (peaks) in metabolic profiles across different (sub)populations
- As many metabolites as possible
- Relatively easy automated high-throughput

Advantages:
- Reveal novel compound and chemical unknowns
- Leading to new insights in disease mechanisms or treatment

Disadvantages:
- You do not know the identity of the metabolites

Library = database that contains information to identify metabolites

4. Was the sample collection, handling, storage and analysis suitable for measuring
(metabol)omics data? Why (not)? Which issues should be taken into account?

What should be mentioned in the method section:
- Sample collection = blood samples after 8 hours of fasting
o Not mentioned time between sample collection and endpoint
- Storage = stored at -80 degrees of Celsius
o Not mentioned timing etc.
- Extraction = at 40 degrees of Celsius

The sample collection, handling, storage and analysis seems suitable for measuring omics data,
however limited information is mentioned.

Issues to take into account:
- Transport
- Laboratory errors
- Storage effects
- Freeze-thaw cycles
- Batch effects

 You need a quality control sample

5. Did the authors use univariate and/or multivariate statistical methods for analyzing their data?
What are the differences and/or advantages of both approaches?

Therefore the author use univariate statistical methods, because there is only one outcome  MAO
= yes/no  logistic regression

However, it is a multivariate methods, because they are looking at all the metabolites together
- PLSDA
- Principal component analysis
- Repeated measures ANOVA
 Complex data driven explorative

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper zoeverschueren. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 50990 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49
  • (0)
In winkelwagen
Toegevoegd