Samenvatting Polymeren – van keten tot kunststof
Hoofdstuk 1:
Eigenschappen polymeren:
- Hebben een grote molecuulmassa: 104 tot meer dan 106 g/mol
- Meestal lange, draadvormige ketens, die soms vertakt zijn (vormen een
netwerk)
- Ketens zijn opgebouwd uit een veelvoud van kleine, meestal identieke,
eenheden (monomeren) die chemisch met elkaar verbonden zijn
Natuurlijke polymeren:
- Plantaardig: hout, katoen, jute, hennep, kurk, etc.
- Dierlijk: wol, zijde, bont, etc.
Half-synthetische polymeren:
- Uit hout: cellulose, celluloid, etc.
- Uit melk: caseïne, kunsthoorn
- Uit huiden: leer
- Uit rubberlatex: technische rubber
Geheel synthetische polymeren:
- Carbochemie: vanuit steenkool
- Pyrolyse (8000c) levert cokes, teer en een reeks koolwaterstoffen
- Vergassen (met stoom en lucht) levert synthesegas dat tot een reeks
koolwaterstoffen kan worden omgezet
- Petrochemie: vanuit aardolie of aardgas
- Destillatie van aardolie levert brandstoffen en een residu à residu kan door
vacuümdestillatie en thermisch kraken een reeks lichtere verbindingen vormen
- Bij kraken van verzadigde koolwaterstoffen ontstaan onverzadigde
componenten
Polymeeropbouw:
- Onverzadigde koolwaterstoffen koppelen (etheen à polyetheen)
- Tweewaardige carbonzuren + tweewaardige alcoholen geven een keten
(afsplitsing van water)
- Als het alcohol driewaardig is, ontstaat er een netwerk
Kunststoffen zijn meestal polymeren + toevoegingen. De toevoegingen kunnen
worden toegevoegd voor verschillende doeleinden:
1. Verwerking:
- Glijmiddelen: transport door verwerkingsmachine
- Zwavel: voor de vulcanisatie (bij rubbers)
- Versnellers: ter versnelling van de netwerkvormende reactie (bij rubbers en
thermoharders)
- Blaasmiddelen: ter vervaardiging van schuimen
2. Mechanische eigenschappen:
- Weekmakers: om flexibel te maken
- Kwartsmeel: ter verhoging van de stijfheid
- Korte glasvezels: ter verhoging van de stijfheid en sterkte
- Rubberdeeltjes: ter verhoging van de slagsterkte
, 3. Andere eigenschappen:
- UV-stabilisatoren: ter bescherming van het polymeer tegen afbraak in het
zonlicht
- Antioxidanten: ter bescherming tegen afbraak bij gebruik op hogere
temperaturen
- Antistatica: ter vermindering van de neiging tot elektrostatische oplading
- Pigmenten: kleuring
- Goedkope vulstoffen: reductie van de kostprijs
- Brandwerende middelen
Atomen in een polymeerketen zijn gebonden met sterke covalente bindingen, maar
tussen ketens heerst relatief zwakke interactiekrachten.
- Zwakke bindingen tussen ketens worden bij belasting het meeste belast à
ongevulde polymeren hebben een lage stijfheid
- Alleen in zeer sterk georiënteerde systemen worden ook de (sterke)
bindingen in de ketens belast à hierbij kunnen extreem hoge stijfheden en
sterktes worden bereikt
- Entanglements: verstrengelingen tussen ketens
- Zorgen voor samenhang tussen de ketens
- Hogere viscositeit
Netwerken: ketens zijn door sterke primaire chemische bindingen met elkaar
verknoopt
Kunnen gevormd worden door:
- Bruggen tussen enkelvoudige ketens aan te brengen
- Tweewaardige met drie- of meer waardige componenten te laten reageren
Hoofdindeling van polymeren:
- Thermoplasten: geen vertakkingen, worden vloeibaar bij
temperatuurverhoging en kunnen na afkoelen weer een vaste vorm aannemen
- Thermoharders: smelten niet en vormen een netwerk
- Elastomeren: gecrosslinkt (veel minder dan thermoharders), vormen een
netwerk, minder gevoelig voor temperatuur dan thermoplasten en smelten niet
Belangrijkste voorbeelden:
- Thermoplasten: polyetheen (PE), polypropeen (PP), polyvinylchloride (PVC),
polystyreen (PS), polyetheentereftalaat (PET) en polycarbonaat (PC)
- Thermoharders: fenol-formaldehyde (PF), onverzadigde polyesters (UP),
epoxyhars (EP) en polyurethanen (PU)
- Elastomeren: styreen-butadieen rubber (SBR), isopreenrubber (IR) en
chloropreenrubber (CR)
Hoofdstuk 2:
Een lineaire keten bestaat uit een ‘ruggengraat’, de hoofdketen, waaraan zijgroepen
zijn bevestigd
Diverse typen hoofdketen:
- Koolstofatomen
- Koolstof- en stikstofatomen
- Koolstof, zuurstof- en stikstofatomen