Samenvatting Metabolisme – Biochemie
2022-2023
---------------------------------------------------------------------------------------------------------------------------
HO1: Vrijstelling van metabole energie
Elk levend organisme heeft voortdurend behoefte aan energie. Energie om arbeid te verrichten,
lichaamstemperatuur op peil te houden, te “leven”, etc.
Deze energie wordt gehaald uit chemische reacties:
- Exotherm (spontaan) = exergoon: vrijstelling van energie of warmte aan de omgeving
(G < 0)
- Endotherm (niet spontaan) = endergoon: onttrokken van energie of warmte van de
omgeving (G > 0)
Metabolisme of stofwisseling:
Katabolisme is de afbraak van biomoleculen in het lichaam, hierbij wordt energie vrijgegeven en
wordt energie gestockeerd.
Anabolisme is de opbouw van biomoleculen in het lichaam, hierbij wordt energie vrijgemaakt uit
reserves en wordt energie verbruikt.
Maar hoe energie “opgeslagen” in voedingsstoffen vrijmaken? Hoe deze energie verbruiken in de
lichaamscellen? Hoe overschot aan energie stockeren voor vastenscenario’s?
Energie in voedingsstoffen:
Eén van de fundamentele kenmerken van de biochemie is het mechanisme waarbij energie die onder
vorm van potentiële energie opgeslagen is in voedingsmiddelen, in de levende cel omgezet wordt in
bruikbare energie. Deze potentiële energie wordt vrijgemaakt door oxidatie van de voedingsstoffen.
Bij deze reactie komt zeer veel warmte vrij. Deze energie kan én mag niet als dusdanig vrijkomen in
het organisme of de lichaamstemperatuur zou niet constant kunnen gehouden worden.
In de levende natuur verlopen de meeste reacties bij dezelfde temperatuur (isotherm). De warmte
die bij de biochemische omzettingen vrijkomt, kan dus niet als dusdanig gebruikt worden voor
andere energie-vergende processen. Slechts een klein deel komt vrij onder de vorm van warmte en
de rest wordt opgeslagen in de vorm van chemische energie nl. in energierijke verbindingen.
Daarom worden energie-vergende processen gekoppeld aan oxidatieve (exergone) processen.
1
,Energie om te functioneren
Energie wordt opgeslaan in energierijke verbindingen waaruit energie kan vrijgesteld worden op
vraag.
Vorming endotherm vraagt energie
Breken exotherm energie komt vrij
Een energierijke verbinding is een molecule waarin onder een bepaalde vorm energie opgeslagen
ligt. Meestal ligt de energie opgeslagen in de structuur van de molecule. Het heeft dus m.a.w. energie
gekost om deze molecule te maken. De vereiste energie zal des te groter zijn naarmate de molecule
moeilijker te maken is of wanneer er zeer veel spanning in de structuur van de molecule gestoken
wordt. Wanneer deze moleculen terug afgebroken worden komt het energiepakket dat er in
gestoken is terug vrij. Dit kan zijn onder de vorm van warmte, of onrechtstreeks onder de vorm van
nieuwe moleculen.
E-pakketten: E-rijke verbindingen
De eerste grafiek is van spontane reactie
Bij de tweede grafiek wordt er stap voor stap kleine energiestappen gemaakt door de aanwezigheid
van enzymen waardoor de grote activeringsenergie wegvalt.
1. Adenosine TriFosfaat (ATP)
ATP of adenosinetrifosfaat is een nucleotide waarbij, op de ribose-ring, drie fosfaatgroepen
veresterd zijn.
In fysiologische omstandigheden (pH = 7,4) is de primaire zuurgroep volledig geïoniseerd (pKa =
2) en de secundaire voor ongeveer 50% (pKa = 6,95). Dit alles maakt dat in ATP, drie van de vier
hydroxylgroepen volledig gedissocieerd zijn en de vierde voor een aanzienlijk percentage. Deze
relatief dicht bij elkaar zittende negatieve ladingen stoten elkaar af.
Reacties waarbij energie nodig is (endergone) zullen gekoppeld worden aan de hydrolyse van
ATP.
Reacties waarbij energie vrijkomt (exergone) zullen gepaard gaan met de opbouw van ATP uit
ADP of AMP, zodat de vrijgekomen energie vast ligt voor en kan gebruikt worden in andere
reacties.
Per afsplitisng van energie komt er veel energie vrij, we hebben zelfde hoeveelheid energie nodig
voor de opbouw.
2
, ATP ADP (1 mol ATP)
ADP AMP (1 mol ATP)
Dus: ATP AMP (2 mol ATP)
2. Acylfosfaten
Zie glycolyse
Algemene formule:
3. Enolfosfaten
Zie glycolyse
Algemene formule:
4. Thiolesters
Zie elektronentransportketen (belangrijkste is acetyl-CoA)
Algemene formule:
5. Guanidinefosfaten
Algemene formule:
Een belangrijk voorbeeld hiervan is creatinefosfaat dat voorkomt in de spieren en de hersenen
en er voor zorgt dat bij spierwerking de ATP-concentratie op peil gehouden wordt:
3
, Fasen in de energie-vrijstelling: (belangrijk schema)
De afbraak van eiwitten, polysachariden en vetten gebeurt in drie fasen
De eerste fase: worden de grote moleculen in hun basiseenheden omgezet
Vetten worden omgezet naar glycerol + vrije vetzuren
Polysachariden worden omgezet naar monosachariden
Proteïnen worden omgezet naar aminozuren
De reacties die hierbij plaatsgrijpen zijn altijd hydrolysereacties die telkens door specifieke enzymen
gekatalyseerd worden. In deze eerste fase wordt GEEN energie vrijgesteld.
De tweede fase: worden de klein moleculen afgebroken tot een beperkt aantal eenvoudige
moleculen die dan een centrale rol gaan spelen in het metabolisme
In principe worden de suikers, de vetzuren, glycerol en verschillende aminozuren omgezet tot
acetylCoA. In deze tweede fase is de energievrijstelling zeer beperkt.
De derde fase: bestaat uit de citroenzuurcyclus en de elektronentransportketen (=oxidatieve
fosforylatie of de ademhalingsketen).
Deze derde fase is de laatste stap in de volledige oxidatie van de brandstofmoleculen. De
koolstofatomen afkomstig van de biomoleculen, worden via de acetylgroep, gebonden aan HSCoA en
in de citroenzuurcyclus gebracht. In deze cyclus wordt de acetylgroep volledig geoxideerd tot CO2.
Per acetylgroep worden 4 elektronenparen getransfereerd naar NAD+ en FAD. Er wordt 3 mol NADH
en 1 mol FADH2 gevormd.
Deze verbindingen dragen hun elektronenparen uiteindelijk, via een cascade van reacties, over op O2
in de elektronentransportketen. Zij worden hierbij geoxideerd tot NAD+ en FAD. De energie die
vrijkomt bij deze redoxreacties wordt vastgelegd in de energierijke verbinding ATP dat gevormd
wordt uit ADP + H3PO4. Dit is de reden waarom deze keten de oxidatieve fosforylatie genoemd
wordt.
Zowel de citroenzuurcyclus als de elektronentransportketen gebeuren in de mitochondriën van de
cel.
4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lautjeD. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €10,29. Je zit daarna nergens aan vast.