100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Management Research Methods 2 (MRM BA2): Received grade: 8.0 () €7,99   In winkelwagen

Samenvatting

Summary Management Research Methods 2 (MRM BA2): Received grade: 8.0 ()

2 beoordelingen
 55 keer bekeken  6 keer verkocht

I made a summary of Management Research Methods 2 which contains additional lecture notes and really helpful notes from the homework I had to do. This elaborate summary will help you with your upcoming exam, as my grade was an 8.0. If you also do the exercises given in class, you should be fine! T...

[Meer zien]

Voorbeeld 4 van de 60  pagina's

  • 16 januari 2023
  • 60
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (4)

2  beoordelingen

review-writer-avatar

Door: brain_mudibany • 2 weken geleden

review-writer-avatar

Door: AfafZadnane • 1 maand geleden

avatar-seller
romytempelman
Summary MRM BA 2
Lecture week 1: conceptual models & ANOVA




In research: by “model” we mean a simplified description of reality.

In social sciences we often treat ordinal scales as (pseudo) interval scales, e.g. Likert scales.

ANOVA: Analysis Of Variance. Test whether different groups score differently on a quantitative
outcome.

Two measurements of variability (how much values differ in your data) are:
- Variance: average of the squared differences from the mean.
- Sum of Squares: sum of the squared differences from the mean.

MRM2 students are assigned to three subgroups, each group receives a different teaching method.
One thing could be to check if there are difference in scores on the exam between the groups.




Which group scores best overall and which scores worst? How can we investigate with a certain level
of (statistical) confidence, what differences there might be between the groups? → ANOVA. This
does help by comparing the variability between the groups against the variability within the groups.
In other words, does it matter in which group you are (which teaching method you receive) with
regard to your exam score? We want to see much of the variability (differences) in our outcome
variable can be explained by our predictor variable. However, we probably won’t be able to explain
all the differences (all the variability) in exam scores, solely by creating our groups who receive
different teaching methods.

VB: If scores on a quantitative outcome vary more WITHIN groups than BETWEEN groups, for
example exam scores for three groups of students who each received a different teaching method.
It then is unlikely that it matters which group you are in, regarding your score on the outcome.




1

,ANOVA statistically examines how much of the variability in our outcome variable can be
explained by our predictor variable. It breaks down variability through calculating sums of squares.
Via these calculations, the ANOVA helps us test if the mean scores of the groups are statistically
different from each other.

Assumptions one way between-subjects ANOVA:
- Predictor Variable (PV) = Categorical with more than 2 groups
- Outcome Variable (OV) = Quantitative

Variance is homogenous across groups → Levene’s test
Groups are roughly equally sized → in this class they always are.
Our subjects can only be in one group (between subjects design).
Residuals are normally distributed → in this class we don’t test for this.

NOT adhering to assumptions can produce invalid outcomes!

Example
Question: Is there a relation between shopping platform
and customer satisfaction?

PV = shopping platform. Categorical, with three levels:
1. Brick-and-mortar store
2. Web shop
3. Reseller

This one PV, more accurately, an equation containing this one PV, is our statistical model in this analysis.

OV = customer satisfaction. Quantitative
- Scores from 1-50

We have 10 observations on customer satisfaction scores (OV).
The grand overall mean (denoted by ydakje) is equal to 32.3




2

,SS (Sum of Squares): quantification of variability of scores of a quantitative outcome.
SStotal: The total variability in scores on an outcome variable, on an outcome variable.

We have now decomposed the variability in our data in a part that can be explained by:
➢ Our model = between group SS (high as possible)
➢ A residual part = within group SS (error, low as possible, similar groups)




We can now calculate the proportion of the total variance in our data that is “explained” by our
model. This ratio to calculate this is called R2. The higher the R2, the better; it can better explain the
variability.
we can explain 95,7% of
the differences in scores
on or OV, by our model.


3

, To investigate if the group means differ with an ANOVA, we do a F-test. This is a statistical test and
thus checks the ratio explained variability to unexplained variability. High value is better.



F-test
H0: all the mean scores of groups on the outcome variable are the same.
HA: at least one of the mean scores of the groups on the outcome variable differs from the others.

VB: Obtaining an F value of 11 tells us that we have 11 times more explained variance than
unexplained variance in our dataset.

However, we cannot just divide the model sum of squares by the residual sum of squares, because
they are not based on the same number of observations and thus not have an ‘equal weight’. We
therefore divide by the degrees of freedom and get something called the “mean square” (average
sum of squares).




!! As with any test statistic, the F-ratio has a null hypothesis and an alternative hypothesis:




As with any test statistic (in this case ”F”) it has an accompanying p value, which tells us: the
probability of obtaining a result (or test-statistic value) equal to (or ‘more extreme’) than what was
observed (the result you got), assuming that the null hypothesis is true. Based on the p value you can
either reject or not reject the null hypothesis. The p value stands for the probability of obtaining the
observed test statistic, or one more extreme, under assumption null hypothesis is true.

If we have three groups in our single PV (One way ANOVA), each group will have mean (average)
score on the OV, and a variance (measure for how much the scores differ within the groups).

We can test whether the means between
the groups statistically differ → F test.

We can also test whether the variances
between the groups statistically differ →
Levene’s test.

1. Check descriptive statistics
2. Check Levene is > 0,05 (variances are equal)
3. Check ANOVA output. <0,05 means there is a significant difference between groups.



4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper romytempelman. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 62555 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99  6x  verkocht
  • (2)
  Kopen