100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Statistiek 1: Een Introductie (ESSB-E1030) €3,99
In winkelwagen

Samenvatting

Samenvatting Statistiek 1: Een Introductie (ESSB-E1030)

 5 keer bekeken  0 keer verkocht

Samenvatting Statistiek 1: Een Introductie (ESSB-E1030)

Voorbeeld 2 van de 8  pagina's

  • 23 januari 2023
  • 8
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (10)
avatar-seller
joycevries
Bijeenkomst 8 statistiek
Kwantitatieve variabelen

Inferentie voor het populatiegemiddelde
Inferentie = het generaliseren van waarnemingen en eigenschappen uit een steekproef naar de
gehele populatie. Gebaseerd op het idee: wat gebeurt er als we iets heel vaak herhalen
(kansberekening)

𝑠
Standaard error van de sample mean 𝑥̅ = 𝑺𝑬𝒙̅ =
√n

Betrouwbaarheidsinterval en significantietesten voor μ van een Normale populatie zijn
gebaseerd op de sample mean 𝑥̅. De sampling distribution van 𝑥̅ hangt af van σ.
Als σ onbekend is, dan schatten we hem met behulp van de sample standaarddeviatie s
-> dat zorgt voor een standaard error.
Dus: wanneer een standaarddeviatie van een statistiek geschat wordt met de data, is het resultaat
𝑠
de standaard error van de statistiek. De standaard error van de sample mean is: 𝑆𝐸𝑥̅= √n


One-sample z-statistiek versus one-sample t statistiek
x̅−μ
Normaal gesproken is de gestandaliseerde sample mean (z-statistiek) = 𝑧 = σ
√n
Dit is de basis voor gevolgtrekking over μ, als σ bekend is. Deze heeft een normaal verdeling

𝑠 σ
Als je echter de σ niet weet, moet je de s gebruiken. Als we √n plaatsen in plaats van √n heeft het
geen normale verdeling meer, maar een t verdeling (one-sample t statistic).
x̅−μ
De one-sample t statistiek is dan 𝑡 = 𝑠 en heeft de t distributie met n-1 degrees of freedom (=df)
√n

➢ Een t-score zegt (net als een z-score): hoe ver is een teststatistiek verwijderd van een gemiddelde
uitgedrukt in standaarddeviaties
➢ Opzoeken in table D -> DF= n-1 ; bovenin staat hoeveel % je zoekt (mdaar dat dan natuurlijk wel
delen



Verdeling van een t-distributie

➢ t(k) staat voor de t distributie met k degrees of freedom.
Die zijn afhankelijk van de sample size, dus zijn voor elke sample size anders. Daarom heeft elke
sample size een andere verdeling t.
➢ Als k groter wordt, wordt de t(k) curve dichterbij de N(0,1) curve.
Als de sample size groter wordt, komt s dichter bij σ te liggen.
➢ Die verdeling heeft (bijna) dezelfde bell-shape als een Normaal verdeling.
De t-verdeling heeft meer kans in de staarten en iets minder in de center. Dat komt
door de verhoogde variabiliteit door het schatten van s voor σ.

, 𝑠
Margin of error voor t-statistiek= 𝒕* = 𝑺𝑬𝒙̅ , oftwel = √n.
(=margin of error voor de populatie mean als we data gebruiken om σ te schatten)

Als je een SRS neemt van grootte n van een populatie met een onbekende mean μ. Een level C
𝑠
confidence interval voor μ is dan 𝑥̅ ± 𝑡 ∗ √nmet daarin t* als waarde voor de t(n-1) density curve met
gebied C tussen -t* en t*.
𝑠
De margin of error hierbij is 𝑡 ∗ . Het confidence level is exact C wanneer de populatieverdeling
√n
normaal is en ook ongeveer correct is voor grote n in andere gevallen



Significante toetsing bij een t-test
Een SRS van grootte n is getrokken uit een populatie met een onbekende mean μ. Om de hypothese
H0: μ=μ0 te testen, gebaseerd op die SRS met grootte n, gebruiken we de
x̅−μo
one-sample t statistic: 𝑡 = 𝑠
√n


Als random variabele T een t(n-1) verdeling heeft, dan is de P-waarde voor de test van H0 tegen:

HA = μ > μ0 is P(T>t)




HA = μ < μ0 is P(T<t)




HA = μ ≠ μ0 is P(Z ≠ t)



Die P-waarden zijn exact als de verdeling van de populatie normaal is. In andere gevallen zijn ze
correct als de n groot is.

Matched pairs design
➢ Meestal gebruiken we comparative inference in plaats van inference, omdat je dan minder te maken hebt
met confounding. In een matched pairs studie zijn subjects in paren gekoppeld. Hun uitkomsten worden
vergeleken binnen elk gekoppeld paar.
➢ Het idee er achter is dat gekoppelde paren beter vergelijkbaar zijn dan ungekoppelde subjecten,
dus de uitkomst is meer effecient(kleinere σ).
Als randomisatie onmogelijk is, gebruiken we ook matched pairs. Het wordt vooral gebruikt als
observaties van hetzelfde subjecten onder twee verschillende condities worden gedaan.
➢ In de meeste omstandigheden kunnen we niet helemaal zeker zijn over de richting van het
verschil. De veiligste strategie is om een twee-zijdig alternatief te gebruiken. (Ha≠…)

Hoofdpunten om matched pairs te onthouden:

1. Een matched pairs analyse wordt gebruikt als subjects gekoppeld zijn in paren of als er twee
metingen of observaties van elk individu worden gedaan en we het verschil willen
onderzoeken

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper joycevries. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 59804 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99
  • (0)
In winkelwagen
Toegevoegd