100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
Eerder door jou gezocht
tentamen-bundel dynamica van systemen engels, tentamen-bundel dynamica van systemen model, tentamen-bundel dynamica van systemen nederland €7,86
In winkelwagen
tentamen-bundel dynamica van systemen engels, tentamen-bundel dynamica van systemen model, tentamen-bundel dynamica van systemen nederland
12 keer bekeken 0 keer verkocht
Vak
Tentamen-bundel dynamica van systemen engels
Instelling
Tentamen-bundel Dynamica Van Systemen Engels
dynamica van systemen,
dynamica tu delft,
tentamen-bundel dynamica van systemen aruba,
tentamen-bundel dynamica van systemen aanpassen,
tentamen-bundel dynamica van systemen aan,
tentamen-bundel dynamica van systemen betekenis,
tentamen-bundel dynamica van systemen b.v,
tentamen-bundel dynam...
CTB 2300
Recent Exams with Solutions
Content Pages
1. Study year 2012/2013
1.1. First opportunity (problems followed by solutions) 2-12
1.2. Resit (problems followed by solutions) 13-20
2. Study year 2013/2014
2.1. First opportunity (problems followed by solutions) 21-28
2.2. Resit (problems followed by solutions) 29-37
3. Study year 2014/2015
3.1. First opportunity (problems followed by solutions) 38-46
3.2. Resit (problems followed by solutions) 47-58
4. Study year 2015/2016
4.1. First opportunity (problems followed by solutions) 59-68
4.2. Resit (problems followed by solutions) 69-79
5. Study year 2017/2018
5.1. First opportunity (problems followed by solutions) 80-90
5.2. Resit (problems followed by solutions) 91-102
1
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Downloaded by Abdra Sree (shahdd2014@gmail.com)
, lOMoARcPSD|10935195
PROBLEMS
Exam: Monday, 24th June 2013
Problem 1 (7.5 exam points).
This problem deals with a playful polar bear jumping on ice as shown in the picture below.
We assume that the bear is jumping on a relatively small ice sheet, which can be schematised
using a mechanical model that is shown in Figure 1.
m, J
L
k c k c
Figure 1. Schematisation of an ice sheet
In Figure 1, the ice sheet is schematized by a rigid bar of mass m , mass moment of inertia (about
the centre of mass) J and length L . The reaction of water on the ice is mimicked with the help of
two spring-dashpot elements that support the ends of the bar. The height of the ice sheet is
assumed to be negligible. The effect of gravity is taken into account in the value of the stiffness of
the springs and should be neglected in the derivation of the equations of motion.
Questions:
1. Assume that the bear jumps right in the middle of the ice sheet and imposes a vertical force
F t on the ice as shown in the figure below.
F t
L2 L 2
2. Derive equation of motion for the vertical displacement of the ice sheet from the
equilibrium (1 exam point).
In the equation of motion derived in the answer to Question 1 assume F t F0 cos t .
Derive an expression for the steady-state displacement (as a function of time) of the ice
sheet caused by this force (0.5 exam points).
2
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Downloaded by Abdra Sree (shahdd2014@gmail.com)
, lOMoARcPSD|10935195
3. In the equation of motion derived in the answer to Question 1 assume F t to be a periodic
function of time with a period T that is shown in the figure below.
F
t
T
Derive the value(s) of T , which will lead to resonance using the following figures for the
system parameters: m 2000 kg, k 28kN m 1 , c 5kN s m 1 (1 exam point).
4. Assume that the bear got tired and at a certain moment just laid right in the middle of the
ice sheet. Assume that at this moment the vertical displacement of the ice sheet from the
equilibrium (downwards) was 10cm and the vertical velocities of the ice sheet and the bear
were zero. The mass of the bear (to be added to the mass of the ice sheet when the bear lies
on it) is 500 kg. The ice sheet parameters are the same as in Question 3. Compute the
velocity of the ice sheet at the time moment t 2s (1 exam point).
5. Assume now that the bear jumps eccentrically (not in the middle of the ice sheet) and
imposes a vertical force F t on the ice as shown in the figure below.
F t
3L 4 L4
Such jumping will cause both the vertical motion of the ice sheet and its rotation about the
centre of its mass. Derive equations of motion (there will be 2 equations) for this situation
assuming that c 0 (2 exam points).
6. Write the stiffness matrix and the mass matrix for the system of equations derived in the
answer to Question 5 (0.5 exam points).
7. In the equation of motion derived in the answer to Question 5 assume F t F0 sin t .
Derive an expression for the steady-state vertical displacement and the angle of rotation of
the ice sheet caused by this force (1.5 exam points).
Problem 2 (2.5 exam points).
Consider a hydraulic system shown in Figure 2. The system consists of a sea and a harbour that
are connected by a canal.
3
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Downloaded by Abdra Sree (shahdd2014@gmail.com)
, lOMoARcPSD|10935195
Figure 2. A hydraulic system addressed in Problem 2.
The equation of motion for this system, written in terms of the water elevation in the harbour
h t and the water elevation at the sea hz t can be written as
BMh BWh h hz ,
where B is the horizontal cross-sectional area of the harbour and M l gA is the inertia of
water in the canal and W is the loss factor. At t 0 the system is at rest, i.e. h 0 h 0 0.
Questions:
1. Assume that the water elevation in the sea depends on time as shown in the figure below.
hz
H0
t
Write down an analytical expression for the time dependence hz t that corresponds to
the dependence shown in the figure above (0.5 exam points).
2. Derive h t that is caused by the sea water elevation hz t defined in Question 8 both
for 0 t and t (2 exam points).
Problem 3 (bonus question, 1 exam point. This problem has to be addressed by those who
wish to get a grade higher than 9.0. All other students are also invited to answer this
question and earn an additional exam point).
Consider a double pendulum shown in Figure 3. The pendulum
consists of two masses and two massless rods as shown in the figure.
All connections allow the frictionless rotation.
Questions:
1. Derive equations of motion that govern free vibrations of the
pendulum under the assumption that the angles 1 and 2 are
small 1 1, 2 1 .
Figure 3. A double pendulum
4
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
Downloaded by Abdra Sree (shahdd2014@gmail.com)
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Adam27. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €7,86. Je zit daarna nergens aan vast.