100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Methodologie en toegepaste biostatistiek II (MTB2) €6,99
In winkelwagen

Samenvatting

Samenvatting Methodologie en toegepaste biostatistiek II (MTB2)

1 beoordeling
 5 keer verkocht

Het is samenvatting van het vak Methodologie en toegepaste biostatistiek II (MTB2) gegeven in de premaster jaar 2022. gebaseerd op alle kennisclips, heb naderhand voor het tentamen een 8,9 gehaald m.b.v. deze samenvatting

Voorbeeld 3 van de 23  pagina's

  • 9 februari 2023
  • 23
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: kaoutarelayadi • 10 maanden geleden

avatar-seller
July2
Kennisclip samenvatting MTB2

Blok 0:

One sample t-test

Je gebruikt t-toetsen bij uitkomsten met kwantitatieve data. Het gemiddelde wat je berekent uit de steekproef
moet kunnen worden beschouwd als een trekking uit de normaalverdeling.
We gebruiken de t-verdeling als het gemiddelde en de standaarddeviatie onderling onafhankelijk zijn van
elkaar. Dat wil zeggen dat als je het gemiddelde hebt berekend dit nog niks zegt over de waarde van de
standaarddeviatie. Het aantal vrijheidsgraden bepaalt in hoeverre de t-verdeling lijkt op een z-verdeling, hoe
meer waarnemingen des te meer het gaat lijken op een normaalverdeling

Bij een one sample t-test:
- Je vergelijkt de uitkomst met de normwaarde
- Het is toepasbaar bij transversale cohortstudies
- Je meet maar 1 groep en vergelijkt die met de norm
- Centrale vraagstelling: hoe verhoudt de situatie zich in vergelijking tot de norm

Voorwaarden voor het gebruiken van de one sample t-test
- Gegevens zijn onafhankelijk dus niet gegroepeerd, probeer hierbij het ‘snowball’ effect te omzeilen
- Schatting voor u is normaal verdeeld, bekijk een Q-Q plot of histogram op het hoog

Voorbeeld

Hypothetische gedachten over lichaamstemperatuur
Gegevens:
- Topsporters hoger basaal metabolisme dan ‘gewone’ mensen
- Verbranding levert meer lichaamswarmte
- Zouden topsporters een gemiddelde hogere lichaamstemperatuur hebben dan de 37 graden die we bij
andere mensen verwachten
- De lichaamstemperatuur is voor 14 sporters gemeten

Er wordt tweezijdig getoetst want we willen kijken of de temperatuur voor topsporters hoger of lager is dan 37
graden dus in beide kanten geïnteresseerd.
H0: μ topsporters=37 graden
H1: μ topsporters≠ 37 graden

x−μ 0
t=
Tg: sd
√n
Als de h0 klopt dan volgt de tg een t-verdeling. Deze t-verdeling heeft 14-1 = 13 d.f. want je doet n – 1 per
onderzoeksgroep. De tg is de maat waarmee we meten hoeveel van onze bevindingen afwijken van de
verwachting onder h0.

37,10 – 37,0
t=
: 0,195 = 1,96
√ 14
Hoeveel bedraagt de kans om een resultaat te vinden dat 1,96 sd’s of meer afwijkt van de verwachting onder
H0, als het basaal metabolisme van topsporters en niet-topsporters in werkelijkheid niet verschilt.

Pr(|t|>1,96) = 0,071 dus 7,1 % kan worden opgezocht in t waarden tabel of berekend met spss.

,Dat is meer dan 5 % dus er kon niet worden aangetoond dat topsporters een hogere lichaamstemperatuur
hebben dan niet niet-sporters, de uitspraak si gedaan bij 95% betrouwbaarheidsinterval (BI)

Het BI kan worden bereken door:
sd
BI95% = x ± t=0,05 d . f .=13 x
√n
0,195
= 37,10 ±2,160 x = 36,99 ; 37,21
√ 14
One sample t-test in spss:
<analyze> <compare mean> <one sample t-test>
Output:
1. eerste table: geeft de N, gemiddelde, SD en standaard fout weer
2. tweede tabel: geeft uitkomst van t-toets met t-waarde, df en daarbijhorende p-waarde en de mean
difference dat geeft verschil tussen gemiddelde en test value weer


Two sample t-test

Is het gevonden verschil tussen de gemiddelden van twee groepen in onze steekproef toe te schrijven aan kans,
of bestaat dit verschil waarschijnlijk ook in de populatie?
Je vergelijkt twee groepen met elkaar en wordt toegepast bij een:
- Transversaal of prospectief cohort
- Patiënt controle studie
- Experimenteel onderzoek

Voorwaarden voor gebruik two sample t-test:
1. de eenheden zijn binnen 2 groepen onderling onafhankelijk
2. Gemiddelde van beide groepen is normaal verdeeld  centrale limietstelling
3. pooled variance t-test: mag alleen gebruikt worden als beide getrokken zijn uit een populatie met dezelfde
spreiding, als dit niet kan dan doen we een two sample t-test op basis van verschil scores. De verschilscores zijn
dan onafhankelijk van de meetwaarde op t=0.

Voorbeeld:




Voor elke deelnemer kan de verschil score berekend worden door de voor minus de na meting te doen. Er
wordt een positievere score verwacht. En de vraag is: is de gemiddelde temperatuur stijging anders voor de
topsporters ten opzichte van de recreanten groep:

, Je ziet dat de topsporters aan de lagere kant zitten (groen), maar hoe kan dit statistische worden bewezen?

Hypotheses opstellen:
H0: is de verandering in temperatuur na inspanning voor beide groepen hetzelfde?
H1: de verandering in temperatuur na inspanning is voor de topsporters en recreanten sporters niet hetzelfde.

Om varianties te vergelijken (voor topsporters = 0,0198 en recreanten sporters = 0,0156) voer je een
hetergonene of homogenen variantie uit. De vrijheidsgraden bij de varianties worden als volgt berekend:
- Homogeen: df = n1 + n2 – 2
- Heterogeen: is een ingewikkelde berekening waarin de df kleiner wordt naarmate het verschil in de
spreiding tussen de onderzoeksgroepen toeneemt




Het gevonden steekproef resultaat betekent dat er een verschil van 2,437 is tussen topsporters en recreanten.
De df is berekend in SPSS en komt neer op 24:
Hoeveel bedraagt de kans om een resultaat te vinden dat 2,437 sd’d of meer afwijkt van de verwachting onder
de H0, als de verandering in lichaamstemperatuur na gestandaardiseerde training niet verschilt tussen
topsporters en recreanten:
Pr(|t| > 2,427) = 0,022

De overschrijding kans is kleiner dan 5 % want 2%, dus er is aangetoond dat de temperatuur stijging van het
lichaam na gestandaardiseerde training sterker is bij recreanten sporters dan bij topsporters , de uitspraak is
gedaan bij een betrouwbaarheid van 95%.

BI95%: (-0,230;-0,019)

Topsporters hebben een lagere temperatuurverandering dan recreanten en dat verschil zit tussen de -0,230 en
de -0,019

Ook wel independent smaple t-test in spss:

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper July2. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99  5x  verkocht
  • (1)
In winkelwagen
Toegevoegd