100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Complete samenvatting Statistiek (Statistics) €4,49   In winkelwagen

Samenvatting

Complete samenvatting Statistiek (Statistics)

2 beoordelingen
 40 keer bekeken  2 keer verkocht

Een complete samenvatting van de wekelijkse les stof van het vak statistics voor econometrie studenten. Het vak wordt in het eerste jaar gegeven en deze samenvatting geeft grondig weer wat er per week goed begrepen moet worden, voorbeelden zijn inbegrepen.

Voorbeeld 3 van de 16  pagina's

  • 9 maart 2023
  • 16
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (1)

2  beoordelingen

review-writer-avatar

Door: florianvandenberg • 1 jaar geleden

review-writer-avatar

Door: mayamaklev • 1 jaar geleden

avatar-seller
victorvanderwel
Week 1: probability recap
A random variable is a function from a sample space S to the real numbers R

P(x ∈ A) = Px (A) = P({s ∈ S|X(s) ∈ A})

The cdf: FX (x) = P(X ≤ x), ∀x ∈ R
pdf/pmf: f (x) = P(X = x) if x is discrete, f (x) = F ′ (x) if X is continuous.

Any function of X, Y = g(X) is a random variable. To find the distribution of
Y we have to invert function g and calculate the cdf of Y .

P
g(x)fX (x), Discrete
E(g(X)) = ´ x∈X
f
x∈X X
(x)dx, Continuous

Var(X) = E(X 2 ) − E(X)2
Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X, Y )
E(aX + bY ) = aE(X) + bE(Y )
Simultaneous and conditional distribution:
Discrete:
pX,Y (k, j) = P(X = k; Y = j)
=j)
pX|Y (k|j) = P(X = k|Y = j) = P(X=k;Y
P(Y =j)
Continuous:
fX,Y (x, y)
f (x,y)
fX|Y (x|y) = X,YfY (y)



E(X) = E[E(X|Y )]
Var(X) = Var(E[X|Y ]) + E[Var(X|Y )]

Law of Large Numbers (LLN)
suppose {Xn }∞
n=1 a sequence iid random variables, then there will be almost sure
convergence to X̃ iff
 
P lim |Xn − X̃| < ϵ = 1, ∀ϵ > 0
n→∞
n
1X
lim Xi = lim X̄n → E[X1 ] almost surely
n→∞ n n→∞
i=1
 
lim P |Xn − X̃| < ϵ = 1, ∀ϵ > 0 Convergence in probability
n→∞

Central limit theorem (CLT) √
n(X̄−µ)
For finite expectation and variance we have. σ
→ N (0, 1)




1

,Week 2: Statistical models
fX (x1 , · · · , xn ) = nk=1 fXk (xk )
Q
A histogram gives the first insights on whether we have possibly chosen the
correct probability distribution for our dataset.
Let {aj }m j=1 be a partition over range xi . It holds that aj − aj−1 = c
Choose y ∈ (aj−1 , aj ]. then
hn (y) = #{1 ≤ i ≤ n|aj−1 < xi ≤ aj } = ni=1 1{xi ∈(aj−1 ,aj ]}
P
A scaled histogram is then:
hn˜(y) =
#{1≤i≤n|aj−1 <xi ≤aj }
cn


Transformations
How do we get the distribution of Y = h(X) from X?
FY (y) = P(Y ≤ y) = P(h(X) ≤ y) = P(X ≤ h−1 (y)) = FX (h−1 (y)

fY (y) = ∂y FY (y)
fY (y) = fX (h−1 (y)) · ∂ −1
∂y
h (y)

Location-scale family Let µ ∈ R, σ > 0,
 
x−µ
Hµ,σ (x) = H
σ
Y , a random variable with cdf H, define Zµ,σ = µ + σY , Then Zµ,σ has cdf Hµ,σ
P(Zµ,σ ≤ y) = P(µ + σY ≤ y)
   
y−µ y−µ
=P Y ≤ =H
σ σ


Week 3: Maximum Likelihood
Definition An estimate for θ0 is any function of the data W (⃗x). The corresponding
estimator is a stochastic variable obtained by filling in the random vector.

Method of moments
n
1X
lim Xi = E(X1 ) → X̄ ≈ E(X1 )
n→∞ n
i=1
n
1X 2
lim Xi = E(X12 ) → X̄ 2 ≈ E(X12 )
n→∞ n
i=1
..
.
n
1X k
lim Xi = E(X1k ) → X¯k ≈ E(X1k )
n→∞ n
i=1

Sample mean: X̄ = n1 ni=1 P
P
Xi
Sample variance: S = n−1 ni=1 (Xi − X̄)2
2 1



2

, Definitions on maximum likelihood
Likelihood function: θ → L(θ|⃗x) = fθ (⃗x)
Maximum likelihood estimate: W (⃗x) = argmaxθ∈Θ L(θ|⃗x), The parameter value in
the parameter space at which the likelihood functino attains its maximum.

L(θ|⃗x) = fθ (⃗x) = Πni=1 gθ (xi )
Log likelihood: θ → log(L(θ|⃗x))
Suppose that the log likelihood is differentiable on Θ ⊆ Rk . Then the maximum
can be attained at two different kinds of points:
i) boundary points
ii) stationary points: is a point θ̃ that satisfies ∂θ∂ j log(L(θ|⃗x))|θ=θ̃ = 0, ∀j ∈ {1, · · · , k}


Week 4: Evaluating estimators
 
Definition Biasθ (W ) = Eθ W (X) ⃗ − τ (θ) . We say that an estimator is unbiased
⃗ = τ (θ).
if Eθ (W (X))
⃗ − τ (θ)||
M AE(θ, W ) = Eθ ||W (X)
⃗ − τ (θ)||2 = Varθ (W (X))
M SE(θ, W ) = Eθ ||W (X) ⃗ + Bias2 (W )
θ
Where the variance is called the precision and the bias squared is called the accuracy.

Definition An estimator W ∗ is a UMVU estimator if it is unbiased and, for any
other estimator W that is unbiased, we have Varθ (W ∗ ) ≤ Varθ (W ).

Cauchy-Schwarz Lemma E(Y Z)2 ≤ E(Y 2 )E(Z 2 )


 2

Iθ = Eθ log(fθ (X)) Fisher information
∂θ
 2  
∂ ∂
iθ = Eθ log(gθ (X1 )) = Var log(fθ (X)) for an individual observation
∂θ ∂θ
Cramer-Rao:
′ 2
⃗ ≥ τ (θ)
Varθ (W (X))

′ 2
⃗ ≥ τ (θ)
Varθ (W (X))
niθ

Week 5: Exponential families
Definition A set of univariate distributions {gθ |θ ∈ Θ} is called an exponential
family if we can rewrite it as:
Pm
wj (θ)tj (x)
gθ (x) = h(x)c(θ)e j=1




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

Verzekerd van kwaliteit door reviews

Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, creditcard of Stuvia-tegoed voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper victorvanderwel. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,49  2x  verkocht
  • (2)
  Kopen