100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Samenvatting ALLE STOF THEORETISCHE BIOLOGIE - KWANTITATIEVE BIOLOGIE (deeltoets 2) Universiteit Utrecht (UU) €4,99
In winkelwagen

Samenvatting

Samenvatting ALLE STOF THEORETISCHE BIOLOGIE - KWANTITATIEVE BIOLOGIE (deeltoets 2) Universiteit Utrecht (UU)

 2 keer verkocht

Ik begreep eerst helemaal niets van Theoretische biologie, het ging me allemaal veel te snel en ik had nog niet eens door wat al die letters nou precies betekenen?! Toch heb ik voor deeltoets 2 een 9.1 gehaald!! Dit is een samenvatting (in begrijpelijk Nederlands) over wat er nou precies allemaal i...

[Meer zien]
Laatste update van het document: 1 jaar geleden

Voorbeeld 3 van de 16  pagina's

  • 12 april 2023
  • 16 augustus 2023
  • 16
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (9)
avatar-seller
VetStudentUU
Theoretische Biologie


Deeltoets 2 van Kwanti tati eve Biologie
Jaar 1, periode 3
Bevat alle uitgewerkte leerdoelen




In ODE modellen (Ordinary Differential Equations) gaan ze ervan uit dat:
- Alle individuen gelijk zijn en beschreven kunnen worden door een enkele variabele.
- De populatie gemixt is, dus ruimtelijke locatie is irrelevant
- De populatie is groot, je hoeft je niet bezig te houden met 0.1 individuen
- De parameters zijn constant, geen seizoensgebonden veranderingen in b of d

b = per capita birth rate Het model dat hier bij hoort:
bN = aantal geboortes stijgt lineair met populatie
d = per capita death rate dN
=( b−d ) N
dN = aantal sterfgevallen stijgt lineair met populatie dt

kleine populatie heeft de neiging om te groeien, een grote heeft de neiging om af te nemen. Als er een evenwicht is
blijft het aantal individuen in de populatie gelijk omdat geboorte en sterfte elkaar in evenwicht houden, dit heet de
steady state.

Als je ‘density dependent death’ gaat toevoegen ziet je model er iets anders uit. Je vervangt de constante d dan
door: f ( N )=d +cN
Je kan dit ook schrijven als: g ( N )=1+ N /k met k =d /c
(k is een maat voor hoe erg je sterfte toeneemt met de populatiegrootte)


Het model dat bij ‘density dependent death’ hoort:

dN
=(b−d ( 1+ N /k )) N met g ( N )=1+ N /k
dt
d is hier je minimale per capita ‘sterfte’ en g hoe je ‘sterfte’ stijgt in relatie tot N
Je noemt het niet-triviale evenwicht ‘K’ ook wel de carrying capacity van het
ecosysteem. Deze kan opgelost worden uit de bovenstaande formule door
dN b−d
=0 in te vullen. Je krijgt dan K=k
dt d

,Een triviaal evenwicht (bijv. N=0) betekent dat een van de populaties is uitgestorven.
Een niet-triviaal evenwicht houdt in dat er co-existentie is.

R0 = b/d Dit is de fitness

Bij een 1-dimensionaal systeem teken je een faseplaatje door een horizontale lijn te tekenen. Vervolgens ga op de
lijn aannames over de afgeleide van de groei tekenen:

a. Als de grafiek > 0 is (boven de x-as), teken je een  om te laten zien dat N toeneemt.
b. Als de grafiek < 0 is (onder de x-as), teken je een  om te laten zien dat N afneemt.
c. Als de grafiek = 0 is, teken je een cirkel om een evenwicht (steady state) aan te duiden.

0 is wel een evenwicht, maar een instabiel evenwicht



Attractor Repellor

Als je meerdere attractoren hebt bepalen de begincondities naar welke attractor het evenwicht beweegt. De grens
tussen twee attractoren is altijd een instabiel evenwicht.
Het interval van de begincondities waarvoor een evenwicht naar een bepaalde attractor beweegt noem je de Basins
of attraction.




dN
Als je ‘density dependent birth’ toevoegt ziet je model ( =( b−d ) N ) er weer iets anders uit.
dt
we vervangen b nu met f ( N )=b−cN , met k =b /c
dit kan je ook weer schrijven als g( N )=1−N /k
(k is nu de populatiegrootte waarbij je geboortecijfer 0 is geworden)

Het model dat hier bij hoort:

dN
=(b ( 1−N /k )−d ) N met g ( N )=1−N /k
dt
b is hier je maximale per capita ‘geboorte’ en g hoe je ‘geboorte’ daalt in relatie tot N
Je noemt het niet-triviale evenwicht ‘K’ ook wel de carrying capacity van het ecosysteem.
dN
Deze kan opgelost worden uit de bovenstaande formule door =0 in te vullen.
dt
Je kan ook een model maken voor logistieke groei, dit doe je met een vergelijking van de vorm:


Logistieke groei:

dN
=rN (1−N / K ) met r =b−d
dt
r is ‘natural rate of increase’ en K is de carrying capacity

, De drie typen functies die we nu behandeld hebben zijn:

dN
Density dependent death: =(b ( 1−N /k )−d ) N Hebben allemaal de vorm:
dt
dN dN 2
Density dependent birth: =(b−d ( 1+ N /k )) N =aN −b N
dt dt

dN
Functie voor logistieke groei: =rN (1−N / K )
dt


Het is natuurlijk zeer onwaarschijnlijk dat ‘geboorte’ en ‘sterfte’ lineair afhangen van N.
Dat zou betekenen dat ‘geboorte’ negatief zou kunnen zijn en ‘sterfte’ oneindig. We gaan nu kijken naar
verzadigingsfuncties, ook wel Hill-functies

xn
Hill-functie: f ( x )=
x n +hn
n n
x h
Reverse Hill-functie: g ( x )=1− n n
= n n
x + h x +h

Nu gaan we kijken naar 2-dimensionale systemen!

Het klassieke predator-prooi model van de ecologie; Lotka-Volterra model



Lotka-Volterra model

dR dN
=( bf ( R ) −d−aN ) R en =( caR−δ ) N Met f ( R )=1−R /k
dt dt
dR dN
=( b (1−R /k)−d−aN ) R en =( caR−δ ) N
dt dt
(a is de killing rate van prooidieren door predatoren, c is hoeveel ‘roofdiermassa’ elk
opgegeten prooidier levert, δ is de sterfte van de roofdieren)


Als je een Lotka-Volterra evenwicht wilt vinden moeten beiden vergelijkingen gelijk zijn aan 0.

Stap 1. Vul 0 in voor de makkelijkste vergelijking en los deze op.
Als je het bovenstaande model gebruikt:

dN
=0 , als je dit oplost krijg je N=0 of R=δ /ca
dt
(dit betekent dus: er zijn 0 predatoren of δ /ca prooidieren)

Stap 2. Substitueer deze oplossingen een voor een in de 2e formule, terwijl je deze gelijkstelt aan 0.
dR
Eerst substitueer je N=0 in =0  ( b ( 1−R /k )−d ) R=0 .
dt
Hier komen weer 2 oplossingen uit: R=0 of (b ( 1−R /k )−d)=0
(dit betekent dus: er zijn 0 prooidieren -beide populaties uitgestorven- of prooidieren op carrying capacity,
geen predatoren, er staat namelijk R=k ( 1−d /b )=K )

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper VetStudentUU. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 65539 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis
€4,99  2x  verkocht
  • (0)
In winkelwagen
Toegevoegd